Práctico Oposiciones Matemáticas Navarra 2018

En esta entrada encontrarás resueltos los problemas del práctico de las oposiciones de Matemáticas de la Comunidad Foral de Navarra de 2018.

Son un total de cuatro problemas ninguno de ellos difícil. Cuando los leí en un primer momento, me pareció que dos eran asequibles y con los otros dos podía encontrar al menos una forma de enfrentarme a ellos. De todas formas no es lo mismo intentar resolverlos en casita con un café, aire acondicionado y todo el tiempo del mundo que en una oposición con 40 grados y treinta minutos por problema.

Problema 1

El primero es de espacios vectoriales, concretamente de la suma de dos subespacios y de su intersección. No tuve la sensación de dificultad al leerlo. Aparentemente se trataba de trabajar con rangos de matrices, con sistemas de ecuaciones lineales y de encontrar bases de subespacios. Una complicación algo mayor que la que podemos encontrarnos en la EBAU, pero nada fuera de lo normal.

Si quieres profundizar en el tema de espacios vectoriales puedes hacerlo en el enlace:

Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía

Dados los siguientes subespacios vectoriales S_1 y S_1 de \mathbb{R}^4:

S_1=<(1,1,-2,1),(0,1,-1,2),(2,-1,-1,-4)> S_2=\{(x,y,z,t)\in\mathbb{R}^4:3x+az=0;\;\;x-2y-2t=0\}

Hallar a para que S_1+S_2 sea distinto de \mathbb{R}^4. En este caso, obtener la dimensión y una base de S_1\cap S_2.

Problema 2

En el problema 2 se trataba de resolver una ecuación de grado 4. Lo primero que pensé era que el problema me iba a resultar difícil porque no recordaba las fórmulas de Ferrari para resolver una ecuación de este tipo. Lo bueno es que enseguida descubrí que no eran necesarias. El paso previo era efectuar un cambio de variable que simplificara la ecuación eliminando el término de grado 3, y al hacerlo la ecuación que resulta es simplemente una bicuadrática.

Puedes leer algo sobre el tema de ecuaciones algebraicas en el enlace:

Tema 14. Ecuaciones. Resolución de ecuaciones. Aproximación numérica de raíces.

Dada la ecuación x^4+4x^3-2x^2-12x+k=0, con k\in\mathbb{R}. Se pide:

a) Discutir las soluciones de la ecuación en función de los valores del parámetro k.

b) Resolver la ecuación si k=-27.

Problema 3

El tercer problema es de envolventes. La característica principal de esta curva es que tiene buenas propiedades de tangencia con cada línea de la familia de la cual es la envolvente. Esta idea se concreta en un sistema de ecuaciones.

Demostrar que la astroide de ecuación x^{2/3}+y^{2/3}=L^{2/3} es la envolvente de la familia de segmentos móviles de longitud constante L, cuyos extremos se apoyan en los ejes de coordenadas.

Problema 4

El cuarto y último problema es de estadística. Nos dicen que la llegada del número de piezas por minuto a una máquina sigue una distribución de Poisson y nos formulan una pregunta sobre probabilidad condicionada. Además nos dan otra variable que indica el tiempo que transcurre entre la llegada de dos piezas pidiéndonos en este caso la función de distribución. Ninguna de las cuestiones era difícil, aunque en mi opinión la primera no estaba bien planteada.

El número de piezas por minuto que llegan a una máquina en una industria automovilística es una variable aleatoria X que sigue una distribución de Poisson de parámetro \lambda. Y el tiempo, en minutos, que transcurre entre las llegadas de un par de piezas, es una variable aleatoria T cuya función de densidad es:

f(t)=\left\{\begin{array}{ccc}
\lambda^2te^{-\lambda t}&\text{si}&t\geq 0\\
0&\text{si}&t<0
\end{array}
\right.

Suponiendo que \lambda=3 en ambas variables aleatorias. Se pide:

a) Si en un período de 120 segundos ya han llegado al menos 3 piezas, ¿cuál es la probabilidad de que en ese período lleguen como mucho 2 piezas más?

b) Obtener la función de distribución de probabilidad acumulada de T, y utilizarla para calcular la probabilidad de que transcurran menos de 90 segundos entre las llegadas de un par de piezas.

Oposiciones Matemáticas. Práctico de la Comunidad de Madrid 2018.

Hola, muy buenas.

En esta entrada voy a resolver los ejercicios del práctico de las oposiciones de Matemáticas de la Comunidad de Madrid en 2018. Esta prueba constaba de cuatro ejercicios. El primero era de geometría y trigonometría, el segundo de funciones, el tercero de series de potencias y determinantes y el último de probabilidad.

Además en las siguientes entradas puedes encontrar otros prácticos también resueltos:

En el práctico de Madrid ninguno de los cuatro ejercicios era excepcionalmente difícil. La realidad es que con algunas pequeñas cuestiones que se salían de lo impartido en 2º de Bachillerato, una gran parte de los contenidos eran propios de dicho curso.

Ejercicio 1.

Sean C y C' dos circunferencias concéntricas de radios r y r' respectivamente, con r<r'. En la corona limitada por C y C' existen ocho circunferencias donde cada C_i es tangente a C_{i+1} para i=1,2\ldots 7, y C_8 es también tangente a C_1. Determine el valor de \frac{r'}{r}.

Ejercicio 2

Sean a y b dos números reales positivos. Demuéstrese que si a<b<e entonces a^b<b^a, y que si e<a<b entonces a^b>b^a.

Ejercicio 3

Calcule el límite en el infinito de la sucesión A_n, siendo A_n el siguiente determinante:

A_n=\left|\begin{array}{crrrrrr}1&-\frac{1}{2}&0&0&0&\ldots&0\\  x&1&-\frac{1}{3}&0&0&\ldots&0 \\ x^2&0&1&-\frac{1}{4}&0&\ldots&0 \\ x^3&0&0&1&-\frac{1}{5}&\ldots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ x^{n-2}&0&0&0&0&1&-\frac{1}{n}\\ x^{n-1}&0&0&0&0&0&1 \end{array}\right|

Ejercicio 4

Un juego de dados tiene las siguientes reglas: se tiran dos dados equilibrados, numerados del 1 al 6, hasta que sumen 4 o 7; si suma 4 gana el tirador, mientras que pierde si la suma es 7. Determine la probabilidad de ganar en dicho juego.

Oposiciones Matemáticas. Extremadura. Badajoz (2000)

[mathjax]

En esta entrada voy a resolver el ejercicio práctico de las oposiciones de Matemáticas en la Comunidad de Extremadura, en Badajoz, en el año 2000.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

También podéis encontrar temas desarrollados en los enlaces:

Este práctico constaba de cuatro problemas o ejercicios. Ninguno de ellos especialmente complicado, y con tiempo os daréis cuenta que podéis resolverlos sin excesivas complicaciones.

Problema 1

El primer de ellos es un problema de espacios duales.

Sea E el espacio vectorial de todos los polinomios con coeficientes reales de grado menor o igual que dos y sea \{w_1,w_2,w_3\} la base dual de la base canónica \{1,x,x^2\}.

Consideramos la base del espacio dual E^* definida por las aplicaciones \overline{w_1}, \overline{w_2} y \overline{w_3}:

    \[\overline{w}_1(p(x)):=\int_0^1p(x)dx\]

    \[\overline{w}_1(p(x)):=\int_0^1x\cdot p(x)dx\]

    \[\overline{w}_3(p(x)):=\int_0^1x^2\cdot p(x)dx\]

(a) Halla las coordenadas de \overline{w}_1, \overline{w}_2 y \overline{w}_3 en la base \{w_1,w_2,w_3\}.

(b) Determina la base de E para la que \{\overline{w}_1,\overline{w}_2,\overline{w}_3\} es su base dual.

Su resolución pasa por conocer conceptos importantes en Matemáticas, como es el de espacio dual. El conjunto de las aplicaciones lineales de un espacio vectorial sobre el cuerpo en el que está construido tiene estructura a su vez de espacio vectorial; y es lo que se denomina el «espacio dual» asociado al espacio vectorial original. La demostración de que verifica las propiedades de e.v. no es complicada e invito a que lo intentéis vosotros mismos sin necesidad de consultar ningún libro de Algebra Lineal. Es curioso a su vez, que la dimensión que tiene dicho espacio coincide, en el caso de espacios vectoriales de dimensión finita, con la dimensión de su espacio original. Sin embargo en el caso de e.v. de dimensión infinita, este hecho no es cierto.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Espacios Duales

Por otra parte, aunque en el problema solo se incide sobre la parte algebraica, siempre se puede considerar la parte topológica. En este caso, cuando trabajemos con espacios vectoriales topológicos, es decir, espacios vectoriales en los que asociamos una topología (dada habitualmente por una norma o una métrica), bien espacios de Banach, o espacios de Hilbert; los espacios duales asociados también mantienen la misma dimensión e incluso topologías análogas siempre que ésta sea finita; y distintas siempre que las dimensiones sean infinitas. Los e.v.t. se estudian principalmente en los textos de Análisis Funcional.

Problema 2

El segundo problema de este examen práctico es de Geometría en el plano. Consiste en calcular el área de un polígono definido a partir de otro del cual ya conocemos su superficie. Una vez que hayamos hecho el dibujo, que por otra parte no es muy difícil, el procedimiento para resolver el problema no es nada complicado. Se trata de «dividir» la superficie a calcular en triángulos y calcular el área de dichos triángulos. Si se siguen los pasos adecuados se llega al resultado sin excesiva complicación.

Sea un cuadrilátero convexo de vértices ABCD y superficie Sm^2. Se prolonga el lado AB por el punto B hasta un punto M de forma que la longitud de BM se igual a la mitad de la longitud del lado AB. Análogamente se prolonga el lado BC por el punto C hasta el punto N de forma que CN=\frac{1}{2}BC. El lado CD se polonga por D hasta P tal que DP=\frac{1}{2}CD y por ultimo el lado DA se prolonga por A hasta Q, tal que AQ=\frac{1}{2}DA.
Halla la superficie del cuadrilátero de vértices MNPQ.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Geometría

Como en todos los ejercicios que resuelvo en los vídeos, mi recomendación es que intentéis hacerlos vosotros antes de ver la resolución. A los problemas, y esto es algo que ya me habéis oído decir en numerosas ocasiones, hay que dedicarles mucho tiempo; hay que empaparse de ellos porque es la única forma de aprender a hacerlos.

Problema 3

En el tercer problema nos piden que calculemos el volumen de un sólido definido a partir de los tres planos coordenados y del movimiento de una recta que se apoya en otras dos rectas. Es una superficie reglada. Es posiblemente el ejercicio más difícil de este práctico.

Calcula el volumen del sólido limitado por los planos cartesianos y por la superficie reglada engendrada por el movimiento de una recta que se conserva paralela al plano XOZ, apoyándose en las rectas r_1:{x=0,z=2} y r_2:{z=0 \text{ y pasa por los puntos }A(3,0,0) \text{ y } B(0,4,0)}

Oposiciones Extremadura. Badajoz (2000). Ejercicio 3: Volumen de una superficie reglada.

Las superficies regladas son aquellas superficies que se definen por el movimiento de una recta que se apoya en dos curvas. Los cilindros de revolución son ejemplos de superficies regladas, los conos de revolución también. Pero no solamente aquellas que puedan provenir de la revolución de una recta alrededor de un eje son superficies regladas. Imaginemos un cilindro en el que las bases, (la «tapa» inferior y la superior) fueran dos elipses, es decir, dos superficies limitadas por dos elipses. En este caso no estamos con una superficie de revolución pero sí con una superficie reglada.

La dificultad de este problema es saber representar correctamente el sólido del cual queremos calcular su volumen. Después, tendremos que resolver una integral triple, de la que lo más difícil será calcular los límites de integración.

Problema 4

El cuarto y último problema es de probabilidad. Es un sencillo ejercicio de diagramas en árbol.

De una urna que contiene a bolas blancas y b bolas negras, dos jugadores hacen extracciones alternativas reemplazando cada uno su bola antes de la siguiente extracción. Gana el jugador que consigue sacar primero una bola blanca.
Calcula la probabilidad de ganar que tiene cada uno de los jugadores.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 4: Probabilidad

La mayor complicación que os encontraréis aquí es que tendréis que efectuar la suma de los infinitos términos de una progresión geométrica. El desarrollo de las probabilidades hasta llegar a las sumas infinitas es sencillo. Aplicando Laplace y el sentido común se llega sin dificultad al resultado.

Si quieres hacer algún comentario o alguna sugerencia puedes hacerlo rellenando el siguiente formulario:

¿Sabes calcular el radio de una circunferencia circunscrita a un triángulo utilizando el teorema del seno?

Uno de los teoremas más importantes de la Trigonometría, (que es el teorema del seno), tiene una relación más que curiosa con el radio de la circunferencia circunscrita a un triángulo dado.

Esta mañana, bueno para ser exactos debería decir ayer; expliqué en un grupo de 1º de Bachillerato de Ciencias dos importantes teoremas de Trigonometría Plana, a saber: el Teorema del Seno y el Teorema del Coseno (el Teorema de la Tangente suelo omitirlo).

Al acabar la explicación que por otra parte ya conocían del año pasado, resolví un par de ejemplos y puse cuatro ejercicios para que los hicieran en casa aplicando dichos teoremas.

Es curioso que en ocasiones los profesores de Matemáticas (y con esto no quiero decir que lo hagan todos, aunque yo sí que me incluyo), cuando ponemos tareas para casa analizamos mental y rápidamente el procedimiento a seguir en dichas tareas. Si dicho procedimiento nos parece apropiado que lo afiancen los alumnos ponemos entonces los problemas pertinentes.

Pues bien, ayer puse para resolver en casa cuatro problemas de aplicación de los teoremas que mencioné antes: el del seno y el del coseno.

Cual es mi sorpresa esta mañana, cuando en uno de ellos el procedimiento no era tan sencillo como pensé en un primer momento.

Obviamente se quedó sin resolver, porque en el aula no puedes llegar a dedicarle más que unos minutos; y si en ese tiempo no logras encontrar la forma de resolverlo tienes que dejarlo para el día siguiente; detener la clase no es conveniente. Pero también se generó un interesante debate en el aula, en el que se aportaron posibles soluciones al problema, aunque en este caso ninguna de ellas válida.

Relación entre el teorema del seno y el radio de la circunferencia circunscrita.

Al finalizar la hora, uno de los alumnos se me acercó y me dijo que para resolverlo se podría utilizar la siguiente fórmula:

Yo reconozco que no la conocía, era la primera vez que veía esa relación entre el teorema del seno de un triángulo y el radio de la circunferencia que lo circunscribe. Sin embargo, debo afirmar que me pareció maravillosa su sencillez.

No conocer la fórmula hirió mi orgullo, :-), así que les dije que haría un vídeo demostrándola: o ella o yo. Y como vencí en el »duelo», en este primer vídeo demuestro la igualdad:

Y en el segundo la aplico para resolver el problema en cuestión:

No sé qué mas aportar o decir. Solo que me gustaría que hayáis comprendido los procedimientos en ambos vídeos y que sepáis aplicarlos en problemas similares.

Ya sabéis que me podéis hacer los comentarios que consideréis.

Un saludo.

Jorge