Oposiciones Matemáticas. Práctico de la Comunidad de Madrid 2018.

Hola, muy buenas.

En esta entrada voy a resolver los ejercicios del práctico de las oposiciones de Matemáticas de la Comunidad de Madrid en 2018. Esta prueba constaba de cuatro ejercicios. El primero era de geometría y trigonometría, el segundo de funciones, el tercero de series de potencias y determinantes y el último de probabilidad.

Además en las siguientes entradas puedes encontrar otros prácticos también resueltos:

En el práctico de Madrid ninguno de los cuatro ejercicios era excepcionalmente difícil. La realidad es que con algunas pequeñas cuestiones que se salían de lo impartido en 2º de Bachillerato, una gran parte de los contenidos eran propios de dicho curso.

Ejercicio 1.

Sean C y C' dos circunferencias concéntricas de radios r y r' respectivamente, con r<r'. En la corona limitada por C y C' existen ocho circunferencias donde cada C_i es tangente a C_{i+1} para i=1,2\ldots 7, y C_8 es también tangente a C_1. Determine el valor de \frac{r'}{r}.

Ejercicio 2

Sean a y b dos números reales positivos. Demuéstrese que si a<b<e entonces a^b<b^a, y que si e<a<b entonces a^b>b^a.

Ejercicio 3

Calcule el límite en el infinito de la sucesión A_n, siendo A_n el siguiente determinante:

A_n=\left|\begin{array}{crrrrrr}1&-\frac{1}{2}&0&0&0&\ldots&0\\  x&1&-\frac{1}{3}&0&0&\ldots&0 \\ x^2&0&1&-\frac{1}{4}&0&\ldots&0 \\ x^3&0&0&1&-\frac{1}{5}&\ldots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ x^{n-2}&0&0&0&0&1&-\frac{1}{n}\\ x^{n-1}&0&0&0&0&0&1 \end{array}\right|

Ejercicio 4

Un juego de dados tiene las siguientes reglas: se tiran dos dados equilibrados, numerados del 1 al 6, hasta que sumen 4 o 7; si suma 4 gana el tirador, mientras que pierde si la suma es 7. Determine la probabilidad de ganar en dicho juego.

¿Polinomio de Taylor? ¿Funciones analíticas? ¿Conoces la relación entre el Polinomio de Taylor y las Funciones Analíticas?

En este post vamos a introducir dos nuevos conceptos en Matemáticas: ¿para qué sirve el Polinomio de Taylor? y ¿qué son las Funciones Analíticas?

El concepto de Función Analítica está profundamente estudiado, tanto en el cuerpo de los números Complejos como en el de los números Reales. La idea que subyace detrás de la definición de una función analítica es la de poder estudiarla sustituyéndola por otra función más sencilla con la que podamos operar con más facilidad.

Las funciones más sencillas son los polinomios; podemos derivarlos e integrarlos sin dificultad, conocer sus máximos o mínimos con poco más que estudiar su grado, calcular sus valores en puntos concretos con pocas operaciones… Podemos en general estudiarlos de forma relativamente sencilla.

Así que si aproximamos una función en un punto por medio de un polinomio conoceremos cómo es dicha función estudiando al polinomio en ese punto.

De ahí sale la idea entonces. Taylor consideró, allá por el siglo XVIII que había funciones que en puntos de su dominio podían aproximarse por un polinomio concreto. Dicho polinomio, que posteriormente se llamó el Polinomio de Taylor, dependía de la cantidad de veces que la función era derivable en dichos puntos. Sin embargo, el hecho de que aproximara a la función dependía además de que a medida que aumentáramos su grado, el valor en puntos cercanos se acercaba a cero.

Teorema de Taylor

Este resultado es lo que se considera el Teorema de Taylor; que afirma que la condición necesaria y suficiente para que una función sea analítica en un punto, es que sea derivable infinitas veces en dicho punto, y que el resto del Polinomio de Taylor de grado n tienda a cero cuando n tienda a infinito; todo ello en un entorno suficientemente pequeño de dicho punto.

Obviamente, lo escrito hasta ahora puede confundir al que lo está leyendo; y no quiero que eso ocurra. Piensa solamente que las funciones analíticas son aquellas que pueden ser aproximadas por polinomios en puntos concretos. El objetivo es trabajar con los polinomios que las aproximan que con dichas funciones.

En el cuerpo de los Complejos las condiciones que implican que una función sea analítica son menos restrictivas y no se van a estudiar en este post, ni en el video que tienes a continuación.

En dicho video analizaremos someramente los conceptos que he estado tratando hasta ahora con un ejemplo de la función analítica por excelencia que es la exponencial. Espero que os guste, y que si tenéis dudas o si queréis hacer algún comentario hacedlo; y si os puedo ayudar o queréis que profundice más en el tema, solo tenéis que decírmelo.

Por último, en la entrada:

Oposiciones Matemáticas Alicante 2009. Parte Práctica

podéis encontrar un problema en el que se utiliza la serie de Taylor para resolverlo. Concretamente el cuarto; y aunque es de probabilidad, la suma de las series que hay que realizar son en realidad series de Taylor.

Un saludo.

Jorge