Tema 3. Técnicas de recuento. Combinatoria

La Combinatoria es una de las nuevas ramas de la Matemática que se encarga de estudiar los distintos agrupamientos que pueden realizarse con los elementos de un conjunto sin tener en cuenta el tipo, forma, color, etc, de los mismos.

Los comienzos de la Combinatoria datan del siglo XVII con los primeros estudios sobre probabilidades de Fermat y Pascal. Éste último es el primero en darse cuenta la relación que existe entre los números combinatorios y la fórmula del desarrollo de un binomio. Recordemos a este respecto que los elementos con los que se construye su famoso triángulo, no son más que una serie de números combinatorios.

Por otra parte en «Disertatio de Arte Combinatoria» de 1666, Leibnitz (1646-1716) introduce los primeros conceptos sobre permutaciones y combinaciones, dando incluso algunas de las primeras fórmulas reconocidas con números combinatorios.

Pero el principal precursor de esta rama de la Matemática fue Jackes Bernouilli (1654-1705), quien en su obra «Arte de la Conjetura, publicada a título póstumo, desarrolla toda una teoría general de permutaciones y combinaciones aplicadas principalmente a la teoría de juegos, pero que se extiende a otros muchos problemas de la época y posteriores. Es precisamente Bernouilli quien por primera vez introduce y demuestra el teorema binomial para exponentes enteros:(a+b)^n=\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k

Poco después fue Euler, quien en «Departitione Numerotum» realiza un estudio sobre las distintas formas en las que se puede escribir un entero positivo como suma de enteros positivos, e incide de nuevo en toda la teoría combinatoria que había hasta el momento. Este problema, que se llamó poco después una partición del natural n, y cada uno de los sumandos una parte; lo plantearemos en secciones posteriores de este tema; concretamente cuando estudiemos las distribuciones y los llenados.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 3. Técnicas de recuento. Combinatoria.

Lenguaje Matemático, Conjuntos y Números. Febrero 2018 (A)

¿Tienes problemas con algunas asignaturas de la UNED? ¿En este caso con Lenguaje Matemático, Conjuntos y Números? Si es así, te vendrá bien tener resueltos algunos de los exámenes que ponen en esta asignatura; en este caso el de febrero de 2018 (A).

La UNED, al menos en el Grado de Matemáticas, no es fácil. Parece una obviedad, teniendo en cuenta que la frase que preside mi blog es que las Matemáticas no son fáciles…  Así es, ya cualquier asignatura en la que tengas que ser autodidacta es difícil, si nos ponemos con las Matemáticas la dificultad se multiplica por diez. Dicho de otra forma: la UNED y las Matemáticas son casi antagónicas.

El objetivo de esta y otras entradas es resolver por medio de vídeos algunos de los exámenes de dicho Grado:

http://www.calatayud.uned.es/examenes/examenes_step_0.asp

En este caso la asignatura elegida ha sido Lenguaje Matemático, Conjuntos y Números, pero tengo pensado hacer lo mismo con otras asignaturas del mismo curso o de cursos posteriores.  Podéis encontrar también otra prueba resuelta de la UNED, concretamente de la asignatura de Álgebra Lineal I resuelta aquí.

Sin crear una entrada, que es lo que he hecho ahora, resolví uno de los exámenes de esta asignatura: el de febrero de 2017 (no sé si el de la primera semana o el de la segunda).

Ahora he pensado añadir una Categoría al blog que se llame UNED, y dentro de ella una por asignatura trabajada. Espero que los vídeos y la resolución de los problemas os ayude en vuestro estudio.

Lenguaje Matemático, Conjuntos y Números. Febrero 2018 (A)
Problema 1

En este primer vídeo resuelvo el primer ejercicio:

Es un problema sobre Anillos Conmutativos. En realidad el ejercicio no es muy difícil, pero es cierto que al ser un problema de Álgebra asusta un poco. La resolución la podéis seguir perfectamente, o eso espero; y en el caso de que tengáis alguna dificultad no tenéis más que escribirme un comentario en youtube, aquí en el blog, o un correo electrónico.

Solo añadir una última nota al respecto. El término «nihilpotente» era la primera vez que lo oía, (o en este caso lo veía escrito); porque para mí la misma definición tiene un término similar que es «nilpotente«. No es importante en esencia cómo se defina, lo que sí es importante es que el apartado (c) genera cierta controversia puesto que no es cierto. Pero bueno, eso es algo que debéis comprobar vosotros mismos siguiendo el vídeo.

Problema 2

Aquí se trata de contar. Debemos calcular cuántas aplicaciones sobreyectivas hay entre dos subconjuntos de números Naturales. Es un problema de permutaciones que encierra una cierta dificultad no muy difícil de entender.

Debo decir además que es posible que la explicación os pueda resultar algo engorrosa, tediosa o tal vez embrollada. Si es así hacédmelo saber e intentaré resolver las dudas que hayan surgido.

El conjunto A tiene n+1 elementos, y el conjunto B uno menos, n. Cuando leí el problema creí que no era complicado. Enseguida pensé que la solución pasaba por calcular las permutaciones de n+1 elementos, es decir (n+1)!; sin embargo no es oro todo lo que reluce, y aquí había que dar una vuelta al problema para encontrar la solución.

Problema 3

Este ejercicio es de Inducción Matemática. Se trata de demostrar una identidad que se cumple para todo número Natural utilizando la Inducción. Debo decir que es relativamente sencillo, y que si tenéis alguna facilidad para operar no deberíais tener dificultades en demostrarla.

En el siguiente vídeo lo encontraréis resuelto.

En el enlace:

Tema 1: Números Naturales. Sistemas de Numeración

tenéis una construcción de los Números Naturales, \mathbb{N}, utilizando los axiomas de Peano; donde el quinto, el Axioma de Inducción Matemática, se aplica en numerosas ocasiones.

Problema 4

Se deja lo más fácil para el final. Es un ejercicio sobre Números Complejos, pero nada complicado. En la primera parte se pide resolver una ecuación de segundo grado, cuya solución será obviamente una pareja de números de \mathbb{C} conjugados; y en la segunda el cálculo de módulos y argumentos de algunos números. En definitiva, un ejercicio de 1º de Bachillerato.

Aquí os dejo el vídeo: