¿Sabes factorizar polinomios en una variable?

Hola, muy buenas.

Pues eso…

¿Sabes factorizar polinomios en una variable? ¿Conoces el concepto de raíz de un polinomio? ¿O el concepto de factor?

Son tres ideas que están íntimamente relacionadas, y se utilizan para descomponer un polinomio en producto de polinomios de grado más pequeño.

Los conceptos de raíz y factor, que se tratan aquí, también puedes estudiarlos en otra entrada de este blog: problemas-de-divisibilidad-de-polinomios en la que puedes estudiar la relación tan estrecha entre la divisibilidad y la factorización.

La factorización de polinomios es uno los pilares del Álgebra, puesto que debemos de tener en cuenta la relación tan directa que existe entre el Cuerpo de Fracciones de los números Enteros, que no es más que el conjunto de los Racionales, y el Cuerpo de fracciones de los Polinomios, que son las famosas fracciones algebraicas. Ambos conjuntos denominados comúnmente en Álgebra como el Cuerpo de Fracciones de un Dominio de Integridad. Tengamos en cuenta que tanto el conjunto de los Enteros como el de los Polinomios con coeficientes en los Enteros tienen la estructura algebraica de un Dominio de Integridad.

Sin embargo, no quiero que este post se convierta en una mala clase magistral de Álgebra, sino que sea más bien una ayuda para que todos aquellos estudiantes que tengan problemas a la hora de descomponer un polinomio en producto de polinomios de grado menor, tengan en estos vídeos una ayuda para tal procedimiento.

Es cierto también que es un error relativamente común entre los estudiantes, pensar que cuando extraemos un número entero como factor común de un polinomio, lo estamos factorizando realmente, y lo cierto es que no es así.

La factorización implica que la descomposición de un cierto «P(x)» debe ser en polinomios de grado mayor o igual a uno, como por ejemplo:

P(x)=(x-1)(x+2)(3x-2)

Y además como se puede observar, también con coeficientes enteros.

La factorización en polinomios con coeficientes reales que incluyan obviamente radicales no es tema de esta entrada, y aunque su estudio está muy relacionado, no es algo que se estudie en Secundaria ni en Bachillerato.

En los tres vídeos que podéis ver a continuación se expone el procedimiento estándar para factorizar un polinomio. Procedimiento que es el que se explica en 3ºESO, en 4ºESO e incluso en Bachillerato.

Primer vídeo: raíces simples

En el primero de los vídeos la descomposición es en factores simples, es decir en factores de grado uno. El procedimiento es el de la división por Ruffini para buscar posibles raíces y por tanto posibles factores.

Segundo vídeo: raíz doble y polinomio de segundo grado irreducible (raíces complejas)

En el segundo de los vídeos nos encontramos con un factor de segundo grado irreducible y una raíz doble que implica un factor de primer grado elevado al cuadrado.

Tercer vídeo: raíces simples racionales

Y en el tercer y último vídeo el polinomio a factorizar tiene raíces racionales, lo que conlleva necesariamente su búsqueda resolviendo una ecuación de segundo grado puesto que por otro método encontrar dichas raíces es poco menos que imposible.

No mucho más que decir en esta entrada, solamente que espero que os hayan gustado los vídeos.

Por último si tenéis algún comentario que hacerme podéis hacerlo más abajo, o bien escribirme un correo electrónico; como prefiráis.

Un saludo.

Jorge.