Las primeras referencias de la existencia de los sistemas de ecuaciones lineales datan incluso de la matemática en Babilonia. No obstante, el problema original, o más concretamente el método de eliminación de incógnitas, proviene de la antigua china. En el tratado Nueve capítulos sobre el Arte Matemático, de los siglos II y I a. C. aparece reflejado:
«Hay tres clases de granos; tres gavillas de primera clase, dos de la segunda clase y una de la tercera hacen 39 medidas; dos de la primera, tres de la segunda y una de la tercera hacen 34 medidas; y una de la primera, dos de la segunda y tres de la tercera hacen 26 medidas. ¿Cuántas medidas de granos están contenidas en una gavilla de cada clase?»
Gauss-Jordan o Fang-Cheng
Lógicamente, además del problema encontramos un procedimiento para su resolución conocido como la regla Fang-Cheng. Dicha regla es la que llamamos de Gauss-Jordan o también eliminación gaussiana. El porqué lo conocemos con el nombre de Gauss o de Gauss-Jordan se debe a que fueron ambos los que lo aplicarón de forma habitual en la resolución del problema de los mínimos cuadrados.
Aunque el procedimiento era considerado relativamente trivial, con la llegada de los ordenadores se volvió casi imprescindible. La regla de Cramer, de la que hablaremos en líneas posteriores, suponía otra forma de resolver un sistema, pero no simplificaba los cálculos. El hecho es que de forma general, los métodos de resolución se complicaban casi exponencialmente cuando aumentaba el número de incógnitas y ecuaciones. En 1946 Alan Turing (1912-1954) tardó dos semanas en resolver un sistema de 18 ecuaciones con 18 incógnitas. Aún con ello, el número de operaciones requerido en la resolución de un sistema era obstensiblemente inferior utilizando la eliminación gaussiana, que con los determinantes de Cramer. Esto provocó que con la llegada de la informática comenzara a ser el más utilizado.
Cramer y Maclaurin
Pero volvamos a Cramer. Actualmente se conoce como la Regla de Cramer a un método de resolución de sistemas de ecuaciones lineales utilizando determinantes. Es curioso que dicha regla no se deba a Gabriel Cramer (1708-1752), sino a Colin Maclaurin (1698-1746). Ésta se publicó en 1748, dos años después de su fallecimiento; y dos años antes también de que lo hiciera Cramer en su Introducción al análisis de curvas algebraicas. La razón del porqué ha llegado hasta nuestros días con el sobrenombre de Cramer se debe a la notación utilizada por éste, más clara y concisa que la de Maclaurin. De todas formas, ni Cramer ni Maclaurin hablaban de determinantes en su desarrollo, ni tan siquiera un poco más tarde Bézout, quien en un trabajo presentado en 1779, Teoría general de las ecuaciones algebraicas, daba un método para resolver sistemas de n ecuaciones con n incógnitas muy similar al de Cramer y Maclaurin.
Rouché y Frobenius
El avance en su resolución vino con el álgebra abstracta, con las matrices y los determinantes. La introducción del rango de una matriz permitió dar unas condiciones necesarias y suficientes para que un sistema tuviera solución. En 1875 Eugène Rouché, matemático francés del siglo XIX, publicó un artículo donde enunciaba el teorema que hoy conocemos como el de Rouché-Frobenius. Curiosamente ese mismo año otro matemático francés publicaba un resultado similar; y también en Italia, Alfredo Capelli daba una variación de la misma idea. Hasta tal punto llegan a aparecer publicaciones, que en Francia al teorema de Roché-Frobenius se le conoce como el teorema de Rouché-Fontené; en Italia como el de Rouché-Capelli; y en Alemania y en otros países (debido a que Leopold Kronecker utilizó los resultados de Capelli para dar una demostración alternativa), como el de Kronecher-Capelli. En España es el matemático Julio Rey Pastor el que le da el nombre de teorema de Rouché-Frobenius.
El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas: