Práctico Oposiciones Matemáticas Navarra 2018

En esta entrada encontrarás resueltos los problemas del práctico de las oposiciones de Matemáticas de la Comunidad Foral de Navarra de 2018.

Son un total de cuatro problemas ninguno de ellos difícil. Cuando los leí en un primer momento, me pareció que dos eran asequibles y con los otros dos podía encontrar al menos una forma de enfrentarme a ellos. De todas formas no es lo mismo intentar resolverlos en casita con un café, aire acondicionado y todo el tiempo del mundo que en una oposición con 40 grados y treinta minutos por problema.

Problema 1

El primero es de espacios vectoriales, concretamente de la suma de dos subespacios y de su intersección. No tuve la sensación de dificultad al leerlo. Aparentemente se trataba de trabajar con rangos de matrices, con sistemas de ecuaciones lineales y de encontrar bases de subespacios. Una complicación algo mayor que la que podemos encontrarnos en la EBAU, pero nada fuera de lo normal.

Si quieres profundizar en el tema de espacios vectoriales puedes hacerlo en el enlace:

Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía

Dados los siguientes subespacios vectoriales S_1 y S_1 de \mathbb{R}^4:

S_1=<(1,1,-2,1),(0,1,-1,2),(2,-1,-1,-4)> S_2=\{(x,y,z,t)\in\mathbb{R}^4:3x+az=0;\;\;x-2y-2t=0\}

Hallar a para que S_1+S_2 sea distinto de \mathbb{R}^4. En este caso, obtener la dimensión y una base de S_1\cap S_2.

Problema 2

En el problema 2 se trataba de resolver una ecuación de grado 4. Lo primero que pensé era que el problema me iba a resultar difícil porque no recordaba las fórmulas de Ferrari para resolver una ecuación de este tipo. Lo bueno es que enseguida descubrí que no eran necesarias. El paso previo era efectuar un cambio de variable que simplificara la ecuación eliminando el término de grado 3, y al hacerlo la ecuación que resulta es simplemente una bicuadrática.

Puedes leer algo sobre el tema de ecuaciones algebraicas en el enlace:

Tema 14. Ecuaciones. Resolución de ecuaciones. Aproximación numérica de raíces.

Dada la ecuación x^4+4x^3-2x^2-12x+k=0, con k\in\mathbb{R}. Se pide:

a) Discutir las soluciones de la ecuación en función de los valores del parámetro k.

b) Resolver la ecuación si k=-27.

Problema 3

El tercer problema es de envolventes. La característica principal de esta curva es que tiene buenas propiedades de tangencia con cada línea de la familia de la cual es la envolvente. Esta idea se concreta en un sistema de ecuaciones.

Demostrar que la astroide de ecuación x^{2/3}+y^{2/3}=L^{2/3} es la envolvente de la familia de segmentos móviles de longitud constante L, cuyos extremos se apoyan en los ejes de coordenadas.

Problema 4

El cuarto y último problema es de estadística. Nos dicen que la llegada del número de piezas por minuto a una máquina sigue una distribución de Poisson y nos formulan una pregunta sobre probabilidad condicionada. Además nos dan otra variable que indica el tiempo que transcurre entre la llegada de dos piezas pidiéndonos en este caso la función de distribución. Ninguna de las cuestiones era difícil, aunque en mi opinión la primera no estaba bien planteada.

El número de piezas por minuto que llegan a una máquina en una industria automovilística es una variable aleatoria X que sigue una distribución de Poisson de parámetro \lambda. Y el tiempo, en minutos, que transcurre entre las llegadas de un par de piezas, es una variable aleatoria T cuya función de densidad es:

f(t)=\left\{\begin{array}{ccc}
\lambda^2te^{-\lambda t}&\text{si}&t\geq 0\\
0&\text{si}&t<0
\end{array}
\right.

Suponiendo que \lambda=3 en ambas variables aleatorias. Se pide:

a) Si en un período de 120 segundos ya han llegado al menos 3 piezas, ¿cuál es la probabilidad de que en ese período lleguen como mucho 2 piezas más?

b) Obtener la función de distribución de probabilidad acumulada de T, y utilizarla para calcular la probabilidad de que transcurran menos de 90 segundos entre las llegadas de un par de piezas.

Tema 11. Conceptos básicos de la teoría de conjuntos. Estructuras algebraicas.

En el edificio de las Matemáticas un concepto es el básico y precursor de todos los restantes, el de conjunto. Cualquier concepto, cualquier teorema, cualquier definición se basa en la premisa de conocer correctamente el concepto de conjunto. Es más, sabemos que todos los resultados o proposiciones con los que podamos trabajar en Matemáticas pueden definirse formalmente a partir de los conjuntos. Esto es, por supuesto, inviable desde el punto de vista práctico pues la combinación de definiciones, axiomas y proposiciones más sencillas nos hacen llegar a teoremas demasiado complicados como para que podamos volver a los fundamentos de una manera inmediata.

George Cantor (1845-1918) definió en el siglo XIX un conjunto como »cualquier colección, considerada como un todo, de objetos definidos y separados en nuestra intuición o en nuestro pensamiento». Esta definición, aceptada originalmente por intuitiva por la comunidad matemática tuvo en el fondo cierta controversia; si bien es cierto también, que los resultados obtenidos por Cantor no fueron invalidados cuando se trabajó con una definición más formal de conjunto.

El hecho fue que, considerar un conjunto como una familia de elementos que verifiquen una propiedad concreta, que por la propia definición de Cantor, podríamos considerar válido, condujo a diferentes paradojas.

Partamos del conjunto de todos los conjuntos, X, que es intuitivamente aceptable, pues no parece complicado pensar en un conjunto que englobe todos los conjuntos. Pero aquí ya llegamos a una contradicción, pues el mismo Cantor ya había demostrado que la potencia de un conjunto, es decir, el conjunto de sus partes tenía un cardinal estrictamente mayor que el propio conjunto, luego
card(X)<card(\mathcal{P}(X))
Esto implicaba necesariamente que X\subsetneq \mathcal{P}(X) lo que nos lleva a contradicción puesto que X era originalmente el conjunto de todos los conjuntos.

La paradoja más conocida fue la de Bertrand Russell (1872-1970), conocida como la Paradoja del Barbero. El planteamiento es muy sencillo: en un pueblo hay un barbero que afeita a todos los que no se afeitan a sí mismos; la pregunta que nos hacemos es: ¿quién afeita al barbero?.

Es cierto que puede parecer más un juego de palabras que proviene del mismo lenguaje, pero si ahondamos en la abstracción que percibimos detrás, llegamos a que en el fondo el problema se encuentra en la definición que tenemos de conjunto.

En primer lugar, la definición de Cantor adolecía de algo necesario en Matemáticas, es decir, de formalidad. Se creía que se podía considerar un conjunto como una familia de elementos que cumpliera una condición previa.
C=\{x\in X: \mathcal{R}(x) \text{ es cierta }\}
Sin embargo Russell consideró un conjunto A con una relación peculiar, la de no-pertenencia:
A=\{x\in X: x\notin x\}
Aparentemente no se estaba incurriendo en ninguna contradicción puesto que no se había hecho otra cosa más que definir una condición sobre unos elementos x de otro conjunto X.

Ahora nos cuestionamos: ¿A es parte de A? es decir, ¿A\in A?

La respuesta queda lejos de ser trivial, y de hecho es una de las paradojas más conocidas de las matemáticas.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 11. Conceptos básicos de la teoría de conjuntos. Estructuras algebraicas.

¿Sabes factorizar polinomios en una variable?

Hola, muy buenas.

Pues eso…

¿Sabes factorizar polinomios en una variable? ¿Conoces el concepto de raíz de un polinomio? ¿O el concepto de factor?

Son tres ideas que están íntimamente relacionadas, y se utilizan para descomponer un polinomio en producto de polinomios de grado más pequeño.

Los conceptos de raíz y factor, que se tratan aquí, también puedes estudiarlos en otra entrada de este blog: problemas-de-divisibilidad-de-polinomios en la que puedes estudiar la relación tan estrecha entre la divisibilidad y la factorización.

La factorización de polinomios es uno los pilares del Álgebra, puesto que debemos de tener en cuenta la relación tan directa que existe entre el Cuerpo de Fracciones de los números Enteros, que no es más que el conjunto de los Racionales, y el Cuerpo de fracciones de los Polinomios, que son las famosas fracciones algebraicas. Ambos conjuntos denominados comúnmente en Álgebra como el Cuerpo de Fracciones de un Dominio de Integridad. Tengamos en cuenta que tanto el conjunto de los Enteros como el de los Polinomios con coeficientes en los Enteros tienen la estructura algebraica de un Dominio de Integridad.

Sin embargo, no quiero que este post se convierta en una mala clase magistral de Álgebra, sino que sea más bien una ayuda para que todos aquellos estudiantes que tengan problemas a la hora de descomponer un polinomio en producto de polinomios de grado menor, tengan en estos vídeos una ayuda para tal procedimiento.

Es cierto también que es un error relativamente común entre los estudiantes, pensar que cuando extraemos un número entero como factor común de un polinomio, lo estamos factorizando realmente, y lo cierto es que no es así.

La factorización implica que la descomposición de un cierto «P(x)» debe ser en polinomios de grado mayor o igual a uno, como por ejemplo:

P(x)=(x-1)(x+2)(3x-2)

Y además como se puede observar, también con coeficientes enteros.

La factorización en polinomios con coeficientes reales que incluyan obviamente radicales no es tema de esta entrada, y aunque su estudio está muy relacionado, no es algo que se estudie en Secundaria ni en Bachillerato.

En los tres vídeos que podéis ver a continuación se expone el procedimiento estándar para factorizar un polinomio. Procedimiento que es el que se explica en 3ºESO, en 4ºESO e incluso en Bachillerato.

Primer vídeo: raíces simples

En el primero de los vídeos la descomposición es en factores simples, es decir en factores de grado uno. El procedimiento es el de la división por Ruffini para buscar posibles raíces y por tanto posibles factores.

Segundo vídeo: raíz doble y polinomio de segundo grado irreducible (raíces complejas)

En el segundo de los vídeos nos encontramos con un factor de segundo grado irreducible y una raíz doble que implica un factor de primer grado elevado al cuadrado.

Tercer vídeo: raíces simples racionales

Y en el tercer y último vídeo el polinomio a factorizar tiene raíces racionales, lo que conlleva necesariamente su búsqueda resolviendo una ecuación de segundo grado puesto que por otro método encontrar dichas raíces es poco menos que imposible.

No mucho más que decir en esta entrada, solamente que espero que os hayan gustado los vídeos.

Por último si tenéis algún comentario que hacerme podéis hacerlo más abajo, o bien escribirme un correo electrónico; como prefiráis.

Un saludo.

Jorge.

Operar con Radicales: sumas, productos, racionalización ¿Conoces sus propiedades pero te cuesta trabajo saber aplicarlas?

En este post vamos a trabajar con radicales, vamos a efectuar las operaciones con radicales más comunes, que no son otras que la suma, la resta, la multiplicación, la división y la racionalización.

Es conocido que en principalmente en 4ºESO, es uno de los problemas principales que tienen los alumnos. En general aunque se estudian las propiedades de las potencias y de las radicales, lo cierto es que cuando tienen que aplicarlas surgen verdaderos problemas.

En general el alumno es capaz de entender las explicaciones de los profesores, pero luego en numerosos casos son incapaces de volver a realizarlas salvo que se las estudien de memoria, algo que en Matemáticas se desaconseja del todo.

La razón principal es que como ya dije en otros posts, las Matemáticas no son fáciles, y es estrictamente necesario realizar ejercicios prácticamente a diario, algo que una mayoría de los alumnos no hacen.

Te propongo por lo menos, que cuando tengas cerca un examen de radicales, refresques un poco la memoria visualizando estos vídeos, y volviendo a realizar los ejercicios que has estado haciendo a lo largo del tema.

Primer vídeo.

En el primer vídeo verás como se resuelve una operación de sumas y restas de radicales, en los que previamente se han tenido que extraer factores para que los radicales sean semejantes.

Segundo vídeo

En el segundo vídeo vamos a trabajar con los productos de radicales con distinto índice. Por una de las propiedades de los radicales es necesario que para multiplicarlos tengan el mismo índice, así que será necesario reducirlos previamente a índice común.

Tercer vídeo

Aquí resolveré un ejercicio relativamente corriente que suele obtenerse en cursos de bachillerato. Dicho ejercicio no es otro que el producto de radicales cuadrados, en los que se utiliza la propiedad distributiva o las identidades notables.

Cuarto vídeo

En este cuarto vídeo se tratará la racionalización. Racionalizar una fracción con radicales es »eliminar» las raíces del denominador. Para ello se suele multiplicar por la misma raíz (si es cuadrada), o por  la que sea necesaria para que en el denominador solamente quede un número.

En ocasiones, cuando en el denominador hay sumas o restas, será necesario multiplicar el numerador y denominador, por el conjugado del denominador. Obtendríamos así una suma por diferencia que como identidad notable resulta una diferencia de cuadrados. De esta forma nos »desharíamos» de las raíces en los denominadores de las fracciones.

En este caso, como ya explico en el vídeo, es preferible racionalizar antes de hacer la operación de suma, puesto que el cálculo del mínimo común múltiplo con radicales es algo más complicado.

 

Quinto vídeo

En este último video de la serie, realizaremos productos y cocientes de radicales de distinto índice, pero con letras. Las operaciones que vamos a realizar ahora son con radicales, pero en cierto modo también son algebraicas.

El ejercicio no es mucho más complicado con letras que con números. De hecho en ocasiones el hecho de tener que trabajar con letras simplifica las operaciones puesto que en estos casos no es necesario factorizar.

Como en otro vídeo anterior, tendremos que reducir a índice común para poder efectuar las operaciones de producto y cociente. También tenéis que tener claras las operaciones con potencias puesto que todos estos casos se utilizan en numerosas ocasiones.

Espero que os hayan gustado los vídeos, y los hayáis entendido. Mi recomendación ahora es que volváis a hacer los cinco ejercicios parando el vídeo; y después comprobéis si la solución que habéis obtenido es la misma que a mí.

La representación de radicales de índice 2 utilizando el teorema de Pitágoras, no es tema de este post, aunque sí es un contenido de 4ºESO. Si quieres puedes conocer su procedimiento en el enlace:

Cómo representar números irracionales en la recta real

Por último, en la siguiente entrada tenéis algunas operaciones con radicales más.

¿Cómo operar con logaritmos, potencias y radicales?

Bueno, si tenéis alguna duda, o si queréis hacer algún comentario podéis hacerlo sin problema; o si queréis escribirme un correo electrónico con vuestras dudas podéis hacerlo e intentaré contestar en cuanto pueda.

Un saludo.

Cómo resolver problemas de divisibilidad de polinomios Divisibilidad de polinomios. Raíces de un polinomio.

Tres métodos diferentes para resolver un problema de divisibilidad de polinomios.

Hola, muy buenas.

Las ideas que subyacen detrás de la divisibilidad de polinomios y el concepto de raíz de un polinomio están íntimamente relacionadas. Este hecho permite que los ejercicios de divisibilidad o de raíces se puedan resolver utilizando diferentes métodos.

En este post vamos a resolver un problema en el que se pide el cálculo de dos incógnitas dentro de un polinomio que cumple unas condiciones concretas de divisibilidad.

Cuando estudias 4ºESO ó 1ºBachillerato, y en particular la divisibilidad de polinomios, los profesores somos bastante exigentes en cuando al conocimiento mínimo con las operaciones básicas entre ellos. Entre estas operaciones están la suma, la resta, el producto y el cociente. Sin embargo, estos procedimientos ya se empiezan a estudiar en 2ºESO, y cuando llegáis a Bachillerato se os pide que vuestros cálculos y operaciones con polinomios e incluso fracciones algebraicas sean mucho más correctos. En otras palabras, nos volvemos más exigentes y os empezamos a pedir que entendáis los conceptos y no tanto los procedimientos.

El ejemplo que voy a resolver en el video es el típico que suele caer en muchos de los exámenes de Secundaria o de Bachillerato. Obviamente, según el curso, el problema tiene una dificultad diferente, aunque en esencia el procedimiento a tratar en ambos es el mismo.

Consideremos el siguiente polinomio:

Se trata de calcular los valores de «m» y «n» para que P(x) sea divisible entre:

Este problema se puede resolver de diferentes formas, y su dificultad estriba más en los cálculos que en el entender los conceptos. En el video explico cómo calcular las incógnitas que se piden de tres formas distintas.

Primera forma:

En ella aplicamos directamente el procedimiento de la división de polinomios. Para ello se llevan las incógnitas hasta el final y después se resuelve un sistema de dos ecuaciones con dos incógnitas relativamente sencillo.

Segunda forma:

Aquí se aplica la propiedad transitiva que tiene la relación de divisibilidad de polinomios. Se cumple que si un polinomio P(x) es divisible entre otro Q(x) y éste último es divisible entre un tercer polinomio T(x), entonces se puede afirmar que P(x) es divisible entre T(x). Esta forma simplifica algunos de los cálculos puesto que después es posible aplicar la regla de Ruffini. En el vídeo lo entenderás mucho mejor.

Tercera forma:

Y por último utilizando el concepto de raíz de un polinomio. La idea es que si P(x) es divisible entre Q(x) entonces todas las raíces que tenga Q(x) son también raíces de P(x). Aplicando a continuación el hecho de que el valor numérico de un polinomio para con sus raíces es cero, se puede plantear un sistema de dos ecuaciones con dos incógnitas que se resuelve fácilmente.

No quiero extenderme más, estoy seguro de que en el vídeo lo entenderéis todo mucho mejor. En cualquier caso, si os surgen dudas siempre podéis dejar un comentario o enviarme un correo electrónico con vuestras impresiones.

Un saludo.

Jorge.