Oposiciones Matemáticas. Práctico de Castilla y León (Burgos 2018).

Hola, muy buenas.

En esta entrada encontraréis los vídeos en los que resuelvo los problemas de la parte práctica de las oposiciones de Matemáticas de la comunidad de Castilla y León; concretamente del año 2018.

En su momento me llamaron la atención porque oí que la dificultad del mismo había sido excesiva. Sin embargo hasta este mes de octubre no me he decidido finalmente a resolverlos; después a hacer los vídeos, editarlos y subirlos al canal que tengo en YouTube.

Es verdad que si los comparamos los problemas con los de Madrid o de Castilla la Mancha, también del año 2018, ganan abrumadoramente, porque de media son claramente más difíciles. Dicho esto, también creo que aunque es literalmente imposible hacerlos todos en el tiempo que os dan, no es complicado hacer dos o con algo de suerte incluso tres. Es verdad también que centrarse en los más fáciles no es factible puesto que en el examen desconoces cuáles son asequibles y cuáles no. Podéis descargaros el práctico aquí.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

Problema 1

El primer problema es en el fondo sencillo. Su dificultad se encuentra esencialmente en el planteamiento.

Hallar el número de n-uplas, (a_1,a_2,...,a_n) de componentes a_i, números enteros positivos que satisfacen las tres ecuaciones siguientes:

\sum_{i=1}^n a_i =26,\;\; \sum_{i=1}^n a_i^2=72,\;\; \sum _{i=1}^n a_i^3=224

La idea consiste en resolver un sistema de ecuaciones lineales cuyas soluciones se encuentran restringidas a algunos números enteros.

Problema 2

El segundo problema es, en mi opinión, el más complicado de los cinco. Nos dan una función continua y positiva definida sobre el intervalo unidad; y después nos piden que demostremos que existe un punto en el que f(x)=f(x+f(x)). Bueno, el problema no dice exactamente esto, pero sí es su esencia.

Sea f:[0,1]\rightarrow [0,\infty] una función continua tal que f(0)=f(1)=0\forall x\in (0,1), f(x)>0. Demostrar que existe un cuadrado con dos vértices en el intervalo (0,1) del eje de abscisas y los otros dos en la gráfica de f.

Problema 3

Aquí se nos pide que realicemos el producto infinito de una sucesión recurrente. Cuando tengamos que realizar la suma de una serie infinita o un producto infinito de una sucesión, tendremos que recurrir en la mayoría de las ocasiones a conocimientos ajenos a lo que nos están pidiendo. Curiosamente en este problema no se da el caso. Podremos resolverlo recordando el producto de otra sucesión muy conocida, que es la de Viète.

Dada la sucesión (x_n)_{n\in \mathbb{N}} definida recurrentemente por x_1=\sqrt{2} y </em>\forall n\in \mathbb{N}: x_{n+1}=\sqrt{\frac{2x_n}{1+x_n}} Calcular: \prod_{n=1}^\infty x_n

Problema 4

Los problemas 4 y 5 forman parte del mismo ejercicio, lo que significa que puntuando sobre 10, cada uno de ellos vale 1,25. El 4º es sobre un lugar geométrico, en el que se utilizan conceptos de geometría de la circunferencia y del triángulo. No es nada difícil, podéis comprobarlo vosotros mismos.

Sea \mathcal{C} una circunferencia y en ella dos puntos distintos, no diametralmente opuestos A y B. Describir el lugar geométrico del ortocentro de los triángulos ABC, siendo C un punto de \mathcal{C} distinto de A y B.

Problema 5

Este último problema forma parte junto con el 4º, del ejercicio 4. También vale 1,25 puntos y es, después del segundo, de los más largos. Es un problema de probabilidad y se trata de valorar cuánto puede valer un cierto a positivo para que se cumplan una serie de condiciones. Nos enfrentamos a un planteamiento no muy complicado que sí tiene diferentes casos y unas cuantas operaciones relativamente sencillas. Al final, lo cicho: algo largo.

Se eligen aleatoriamente los números b,c\in[0,a]. La probabilidad de que la distancia en el plano complejo de las raíces del polinomio z^2+bz+c no sea mayor que 1, no es menor que 0,25, hallar a.

No existen fórmulas para aprender a resolver problemas, salvo haber resuelto muchos. Mi recomendación es que intentéis el práctico vosotros mismos, sin ver ninguno de los vídeos; y solo después de haber dedicado bastante tiempo a cada problema visualizar como los resuelvo yo.

Por último deciros que podéis hacerme llegar cualquier comentario, bien a través del blog, bien a través de mi correo electrónico: jorgemorra@outlook.es.

Jorge Morra

Oposiciones Matemáticas. Extremadura. Badajoz (2000)

[mathjax]

En esta entrada voy a resolver el ejercicio práctico de las oposiciones de Matemáticas en la Comunidad de Extremadura, en Badajoz, en el año 2000.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

También podéis encontrar temas desarrollados en los enlaces:

Este práctico constaba de cuatro problemas o ejercicios. Ninguno de ellos especialmente complicado, y con tiempo os daréis cuenta que podéis resolverlos sin excesivas complicaciones.

Problema 1

El primer de ellos es un problema de espacios duales.

Sea E el espacio vectorial de todos los polinomios con coeficientes reales de grado menor o igual que dos y sea \{w_1,w_2,w_3\} la base dual de la base canónica \{1,x,x^2\}.

Consideramos la base del espacio dual E^* definida por las aplicaciones \overline{w_1}, \overline{w_2} y \overline{w_3}:

    \[\overline{w}_1(p(x)):=\int_0^1p(x)dx\]

    \[\overline{w}_1(p(x)):=\int_0^1x\cdot p(x)dx\]

    \[\overline{w}_3(p(x)):=\int_0^1x^2\cdot p(x)dx\]

(a) Halla las coordenadas de \overline{w}_1, \overline{w}_2 y \overline{w}_3 en la base \{w_1,w_2,w_3\}.

(b) Determina la base de E para la que \{\overline{w}_1,\overline{w}_2,\overline{w}_3\} es su base dual.

Su resolución pasa por conocer conceptos importantes en Matemáticas, como es el de espacio dual. El conjunto de las aplicaciones lineales de un espacio vectorial sobre el cuerpo en el que está construido tiene estructura a su vez de espacio vectorial; y es lo que se denomina el «espacio dual» asociado al espacio vectorial original. La demostración de que verifica las propiedades de e.v. no es complicada e invito a que lo intentéis vosotros mismos sin necesidad de consultar ningún libro de Algebra Lineal. Es curioso a su vez, que la dimensión que tiene dicho espacio coincide, en el caso de espacios vectoriales de dimensión finita, con la dimensión de su espacio original. Sin embargo en el caso de e.v. de dimensión infinita, este hecho no es cierto.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Espacios Duales

Por otra parte, aunque en el problema solo se incide sobre la parte algebraica, siempre se puede considerar la parte topológica. En este caso, cuando trabajemos con espacios vectoriales topológicos, es decir, espacios vectoriales en los que asociamos una topología (dada habitualmente por una norma o una métrica), bien espacios de Banach, o espacios de Hilbert; los espacios duales asociados también mantienen la misma dimensión e incluso topologías análogas siempre que ésta sea finita; y distintas siempre que las dimensiones sean infinitas. Los e.v.t. se estudian principalmente en los textos de Análisis Funcional.

Problema 2

El segundo problema de este examen práctico es de Geometría en el plano. Consiste en calcular el área de un polígono definido a partir de otro del cual ya conocemos su superficie. Una vez que hayamos hecho el dibujo, que por otra parte no es muy difícil, el procedimiento para resolver el problema no es nada complicado. Se trata de «dividir» la superficie a calcular en triángulos y calcular el área de dichos triángulos. Si se siguen los pasos adecuados se llega al resultado sin excesiva complicación.

Sea un cuadrilátero convexo de vértices ABCD y superficie Sm^2. Se prolonga el lado AB por el punto B hasta un punto M de forma que la longitud de BM se igual a la mitad de la longitud del lado AB. Análogamente se prolonga el lado BC por el punto C hasta el punto N de forma que CN=\frac{1}{2}BC. El lado CD se polonga por D hasta P tal que DP=\frac{1}{2}CD y por ultimo el lado DA se prolonga por A hasta Q, tal que AQ=\frac{1}{2}DA.
Halla la superficie del cuadrilátero de vértices MNPQ.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Geometría

Como en todos los ejercicios que resuelvo en los vídeos, mi recomendación es que intentéis hacerlos vosotros antes de ver la resolución. A los problemas, y esto es algo que ya me habéis oído decir en numerosas ocasiones, hay que dedicarles mucho tiempo; hay que empaparse de ellos porque es la única forma de aprender a hacerlos.

Problema 3

En el tercer problema nos piden que calculemos el volumen de un sólido definido a partir de los tres planos coordenados y del movimiento de una recta que se apoya en otras dos rectas. Es una superficie reglada. Es posiblemente el ejercicio más difícil de este práctico.

Calcula el volumen del sólido limitado por los planos cartesianos y por la superficie reglada engendrada por el movimiento de una recta que se conserva paralela al plano XOZ, apoyándose en las rectas r_1:{x=0,z=2} y r_2:{z=0 \text{ y pasa por los puntos }A(3,0,0) \text{ y } B(0,4,0)}

Oposiciones Extremadura. Badajoz (2000). Ejercicio 3: Volumen de una superficie reglada.

Las superficies regladas son aquellas superficies que se definen por el movimiento de una recta que se apoya en dos curvas. Los cilindros de revolución son ejemplos de superficies regladas, los conos de revolución también. Pero no solamente aquellas que puedan provenir de la revolución de una recta alrededor de un eje son superficies regladas. Imaginemos un cilindro en el que las bases, (la «tapa» inferior y la superior) fueran dos elipses, es decir, dos superficies limitadas por dos elipses. En este caso no estamos con una superficie de revolución pero sí con una superficie reglada.

La dificultad de este problema es saber representar correctamente el sólido del cual queremos calcular su volumen. Después, tendremos que resolver una integral triple, de la que lo más difícil será calcular los límites de integración.

Problema 4

El cuarto y último problema es de probabilidad. Es un sencillo ejercicio de diagramas en árbol.

De una urna que contiene a bolas blancas y b bolas negras, dos jugadores hacen extracciones alternativas reemplazando cada uno su bola antes de la siguiente extracción. Gana el jugador que consigue sacar primero una bola blanca.
Calcula la probabilidad de ganar que tiene cada uno de los jugadores.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 4: Probabilidad

La mayor complicación que os encontraréis aquí es que tendréis que efectuar la suma de los infinitos términos de una progresión geométrica. El desarrollo de las probabilidades hasta llegar a las sumas infinitas es sencillo. Aplicando Laplace y el sentido común se llega sin dificultad al resultado.

Si quieres hacer algún comentario o alguna sugerencia puedes hacerlo rellenando el siguiente formulario: