Práctico Oposiciones Matemáticas Navarra 2018

En esta entrada encontrarás resueltos los problemas del práctico de las oposiciones de Matemáticas de la Comunidad Foral de Navarra de 2018.

Son un total de cuatro problemas ninguno de ellos difícil. Cuando los leí en un primer momento, me pareció que dos eran asequibles y con los otros dos podía encontrar al menos una forma de enfrentarme a ellos. De todas formas no es lo mismo intentar resolverlos en casita con un café, aire acondicionado y todo el tiempo del mundo que en una oposición con 40 grados y treinta minutos por problema.

Problema 1

El primero es de espacios vectoriales, concretamente de la suma de dos subespacios y de su intersección. No tuve la sensación de dificultad al leerlo. Aparentemente se trataba de trabajar con rangos de matrices, con sistemas de ecuaciones lineales y de encontrar bases de subespacios. Una complicación algo mayor que la que podemos encontrarnos en la EBAU, pero nada fuera de lo normal.

Si quieres profundizar en el tema de espacios vectoriales puedes hacerlo en el enlace:

Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía

Dados los siguientes subespacios vectoriales S_1 y S_1 de \mathbb{R}^4:

S_1=<(1,1,-2,1),(0,1,-1,2),(2,-1,-1,-4)> S_2=\{(x,y,z,t)\in\mathbb{R}^4:3x+az=0;\;\;x-2y-2t=0\}

Hallar a para que S_1+S_2 sea distinto de \mathbb{R}^4. En este caso, obtener la dimensión y una base de S_1\cap S_2.

Problema 2

En el problema 2 se trataba de resolver una ecuación de grado 4. Lo primero que pensé era que el problema me iba a resultar difícil porque no recordaba las fórmulas de Ferrari para resolver una ecuación de este tipo. Lo bueno es que enseguida descubrí que no eran necesarias. El paso previo era efectuar un cambio de variable que simplificara la ecuación eliminando el término de grado 3, y al hacerlo la ecuación que resulta es simplemente una bicuadrática.

Puedes leer algo sobre el tema de ecuaciones algebraicas en el enlace:

Tema 14. Ecuaciones. Resolución de ecuaciones. Aproximación numérica de raíces.

Dada la ecuación x^4+4x^3-2x^2-12x+k=0, con k\in\mathbb{R}. Se pide:

a) Discutir las soluciones de la ecuación en función de los valores del parámetro k.

b) Resolver la ecuación si k=-27.

Problema 3

El tercer problema es de envolventes. La característica principal de esta curva es que tiene buenas propiedades de tangencia con cada línea de la familia de la cual es la envolvente. Esta idea se concreta en un sistema de ecuaciones.

Demostrar que la astroide de ecuación x^{2/3}+y^{2/3}=L^{2/3} es la envolvente de la familia de segmentos móviles de longitud constante L, cuyos extremos se apoyan en los ejes de coordenadas.

Problema 4

El cuarto y último problema es de estadística. Nos dicen que la llegada del número de piezas por minuto a una máquina sigue una distribución de Poisson y nos formulan una pregunta sobre probabilidad condicionada. Además nos dan otra variable que indica el tiempo que transcurre entre la llegada de dos piezas pidiéndonos en este caso la función de distribución. Ninguna de las cuestiones era difícil, aunque en mi opinión la primera no estaba bien planteada.

El número de piezas por minuto que llegan a una máquina en una industria automovilística es una variable aleatoria X que sigue una distribución de Poisson de parámetro \lambda. Y el tiempo, en minutos, que transcurre entre las llegadas de un par de piezas, es una variable aleatoria T cuya función de densidad es:

f(t)=\left\{\begin{array}{ccc}
\lambda^2te^{-\lambda t}&\text{si}&t\geq 0\\
0&\text{si}&t<0
\end{array}
\right.

Suponiendo que \lambda=3 en ambas variables aleatorias. Se pide:

a) Si en un período de 120 segundos ya han llegado al menos 3 piezas, ¿cuál es la probabilidad de que en ese período lleguen como mucho 2 piezas más?

b) Obtener la función de distribución de probabilidad acumulada de T, y utilizarla para calcular la probabilidad de que transcurran menos de 90 segundos entre las llegadas de un par de piezas.

Oposiciones Matemáticas. Práctico de la Comunidad de Madrid 2018.

Hola, muy buenas.

En esta entrada voy a resolver los ejercicios del práctico de las oposiciones de Matemáticas de la Comunidad de Madrid en 2018. Esta prueba constaba de cuatro ejercicios. El primero era de geometría y trigonometría, el segundo de funciones, el tercero de series de potencias y determinantes y el último de probabilidad.

Además en las siguientes entradas puedes encontrar otros prácticos también resueltos:

En el práctico de Madrid ninguno de los cuatro ejercicios era excepcionalmente difícil. La realidad es que con algunas pequeñas cuestiones que se salían de lo impartido en 2º de Bachillerato, una gran parte de los contenidos eran propios de dicho curso.

Ejercicio 1.

Sean C y C' dos circunferencias concéntricas de radios r y r' respectivamente, con r<r'. En la corona limitada por C y C' existen ocho circunferencias donde cada C_i es tangente a C_{i+1} para i=1,2\ldots 7, y C_8 es también tangente a C_1. Determine el valor de \frac{r'}{r}.

Ejercicio 2

Sean a y b dos números reales positivos. Demuéstrese que si a<b<e entonces a^b<b^a, y que si e<a<b entonces a^b>b^a.

Ejercicio 3

Calcule el límite en el infinito de la sucesión A_n, siendo A_n el siguiente determinante:

A_n=\left|\begin{array}{crrrrrr}1&-\frac{1}{2}&0&0&0&\ldots&0\\  x&1&-\frac{1}{3}&0&0&\ldots&0 \\ x^2&0&1&-\frac{1}{4}&0&\ldots&0 \\ x^3&0&0&1&-\frac{1}{5}&\ldots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ x^{n-2}&0&0&0&0&1&-\frac{1}{n}\\ x^{n-1}&0&0&0&0&0&1 \end{array}\right|

Ejercicio 4

Un juego de dados tiene las siguientes reglas: se tiran dos dados equilibrados, numerados del 1 al 6, hasta que sumen 4 o 7; si suma 4 gana el tirador, mientras que pierde si la suma es 7. Determine la probabilidad de ganar en dicho juego.

Oposiciones Matemáticas. Práctico de Castilla y León (Burgos 2018).

Hola, muy buenas.

En esta entrada encontraréis los vídeos en los que resuelvo los problemas de la parte práctica de las oposiciones de Matemáticas de la comunidad de Castilla y León; concretamente del año 2018.

En su momento me llamaron la atención porque oí que la dificultad del mismo había sido excesiva. Sin embargo hasta este mes de octubre no me he decidido finalmente a resolverlos; después a hacer los vídeos, editarlos y subirlos al canal que tengo en YouTube.

Es verdad que si los comparamos los problemas con los de Madrid o de Castilla la Mancha, también del año 2018, ganan abrumadoramente, porque de media son claramente más difíciles. Dicho esto, también creo que aunque es literalmente imposible hacerlos todos en el tiempo que os dan, no es complicado hacer dos o con algo de suerte incluso tres. Es verdad también que centrarse en los más fáciles no es factible puesto que en el examen desconoces cuáles son asequibles y cuáles no. Podéis descargaros el práctico aquí.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

Problema 1

El primer problema es en el fondo sencillo. Su dificultad se encuentra esencialmente en el planteamiento.

Hallar el número de n-uplas, (a_1,a_2,...,a_n) de componentes a_i, números enteros positivos que satisfacen las tres ecuaciones siguientes:

\sum_{i=1}^n a_i =26,\;\; \sum_{i=1}^n a_i^2=72,\;\; \sum _{i=1}^n a_i^3=224

La idea consiste en resolver un sistema de ecuaciones lineales cuyas soluciones se encuentran restringidas a algunos números enteros.

Problema 2

El segundo problema es, en mi opinión, el más complicado de los cinco. Nos dan una función continua y positiva definida sobre el intervalo unidad; y después nos piden que demostremos que existe un punto en el que f(x)=f(x+f(x)). Bueno, el problema no dice exactamente esto, pero sí es su esencia.

Sea f:[0,1]\rightarrow [0,\infty] una función continua tal que f(0)=f(1)=0\forall x\in (0,1), f(x)>0. Demostrar que existe un cuadrado con dos vértices en el intervalo (0,1) del eje de abscisas y los otros dos en la gráfica de f.

Problema 3

Aquí se nos pide que realicemos el producto infinito de una sucesión recurrente. Cuando tengamos que realizar la suma de una serie infinita o un producto infinito de una sucesión, tendremos que recurrir en la mayoría de las ocasiones a conocimientos ajenos a lo que nos están pidiendo. Curiosamente en este problema no se da el caso. Podremos resolverlo recordando el producto de otra sucesión muy conocida, que es la de Viète.

Dada la sucesión (x_n)_{n\in \mathbb{N}} definida recurrentemente por x_1=\sqrt{2} y </em>\forall n\in \mathbb{N}: x_{n+1}=\sqrt{\frac{2x_n}{1+x_n}} Calcular: \prod_{n=1}^\infty x_n

Problema 4

Los problemas 4 y 5 forman parte del mismo ejercicio, lo que significa que puntuando sobre 10, cada uno de ellos vale 1,25. El 4º es sobre un lugar geométrico, en el que se utilizan conceptos de geometría de la circunferencia y del triángulo. No es nada difícil, podéis comprobarlo vosotros mismos.

Sea \mathcal{C} una circunferencia y en ella dos puntos distintos, no diametralmente opuestos A y B. Describir el lugar geométrico del ortocentro de los triángulos ABC, siendo C un punto de \mathcal{C} distinto de A y B.

Problema 5

Este último problema forma parte junto con el 4º, del ejercicio 4. También vale 1,25 puntos y es, después del segundo, de los más largos. Es un problema de probabilidad y se trata de valorar cuánto puede valer un cierto a positivo para que se cumplan una serie de condiciones. Nos enfrentamos a un planteamiento no muy complicado que sí tiene diferentes casos y unas cuantas operaciones relativamente sencillas. Al final, lo cicho: algo largo.

Se eligen aleatoriamente los números b,c\in[0,a]. La probabilidad de que la distancia en el plano complejo de las raíces del polinomio z^2+bz+c no sea mayor que 1, no es menor que 0,25, hallar a.

No existen fórmulas para aprender a resolver problemas, salvo haber resuelto muchos. Mi recomendación es que intentéis el práctico vosotros mismos, sin ver ninguno de los vídeos; y solo después de haber dedicado bastante tiempo a cada problema visualizar como los resuelvo yo.

Por último deciros que podéis hacerme llegar cualquier comentario, bien a través del blog, bien a través de mi correo electrónico: jorgemorra@outlook.es.

Jorge Morra

Oposiciones Matemáticas. Extremadura. Badajoz (2000)

[mathjax]

En esta entrada voy a resolver el ejercicio práctico de las oposiciones de Matemáticas en la Comunidad de Extremadura, en Badajoz, en el año 2000.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

También podéis encontrar temas desarrollados en los enlaces:

Este práctico constaba de cuatro problemas o ejercicios. Ninguno de ellos especialmente complicado, y con tiempo os daréis cuenta que podéis resolverlos sin excesivas complicaciones.

Problema 1

El primer de ellos es un problema de espacios duales.

Sea E el espacio vectorial de todos los polinomios con coeficientes reales de grado menor o igual que dos y sea \{w_1,w_2,w_3\} la base dual de la base canónica \{1,x,x^2\}.

Consideramos la base del espacio dual E^* definida por las aplicaciones \overline{w_1}, \overline{w_2} y \overline{w_3}:

    \[\overline{w}_1(p(x)):=\int_0^1p(x)dx\]

    \[\overline{w}_1(p(x)):=\int_0^1x\cdot p(x)dx\]

    \[\overline{w}_3(p(x)):=\int_0^1x^2\cdot p(x)dx\]

(a) Halla las coordenadas de \overline{w}_1, \overline{w}_2 y \overline{w}_3 en la base \{w_1,w_2,w_3\}.

(b) Determina la base de E para la que \{\overline{w}_1,\overline{w}_2,\overline{w}_3\} es su base dual.

Su resolución pasa por conocer conceptos importantes en Matemáticas, como es el de espacio dual. El conjunto de las aplicaciones lineales de un espacio vectorial sobre el cuerpo en el que está construido tiene estructura a su vez de espacio vectorial; y es lo que se denomina el «espacio dual» asociado al espacio vectorial original. La demostración de que verifica las propiedades de e.v. no es complicada e invito a que lo intentéis vosotros mismos sin necesidad de consultar ningún libro de Algebra Lineal. Es curioso a su vez, que la dimensión que tiene dicho espacio coincide, en el caso de espacios vectoriales de dimensión finita, con la dimensión de su espacio original. Sin embargo en el caso de e.v. de dimensión infinita, este hecho no es cierto.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Espacios Duales

Por otra parte, aunque en el problema solo se incide sobre la parte algebraica, siempre se puede considerar la parte topológica. En este caso, cuando trabajemos con espacios vectoriales topológicos, es decir, espacios vectoriales en los que asociamos una topología (dada habitualmente por una norma o una métrica), bien espacios de Banach, o espacios de Hilbert; los espacios duales asociados también mantienen la misma dimensión e incluso topologías análogas siempre que ésta sea finita; y distintas siempre que las dimensiones sean infinitas. Los e.v.t. se estudian principalmente en los textos de Análisis Funcional.

Problema 2

El segundo problema de este examen práctico es de Geometría en el plano. Consiste en calcular el área de un polígono definido a partir de otro del cual ya conocemos su superficie. Una vez que hayamos hecho el dibujo, que por otra parte no es muy difícil, el procedimiento para resolver el problema no es nada complicado. Se trata de «dividir» la superficie a calcular en triángulos y calcular el área de dichos triángulos. Si se siguen los pasos adecuados se llega al resultado sin excesiva complicación.

Sea un cuadrilátero convexo de vértices ABCD y superficie Sm^2. Se prolonga el lado AB por el punto B hasta un punto M de forma que la longitud de BM se igual a la mitad de la longitud del lado AB. Análogamente se prolonga el lado BC por el punto C hasta el punto N de forma que CN=\frac{1}{2}BC. El lado CD se polonga por D hasta P tal que DP=\frac{1}{2}CD y por ultimo el lado DA se prolonga por A hasta Q, tal que AQ=\frac{1}{2}DA.
Halla la superficie del cuadrilátero de vértices MNPQ.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Geometría

Como en todos los ejercicios que resuelvo en los vídeos, mi recomendación es que intentéis hacerlos vosotros antes de ver la resolución. A los problemas, y esto es algo que ya me habéis oído decir en numerosas ocasiones, hay que dedicarles mucho tiempo; hay que empaparse de ellos porque es la única forma de aprender a hacerlos.

Problema 3

En el tercer problema nos piden que calculemos el volumen de un sólido definido a partir de los tres planos coordenados y del movimiento de una recta que se apoya en otras dos rectas. Es una superficie reglada. Es posiblemente el ejercicio más difícil de este práctico.

Calcula el volumen del sólido limitado por los planos cartesianos y por la superficie reglada engendrada por el movimiento de una recta que se conserva paralela al plano XOZ, apoyándose en las rectas r_1:{x=0,z=2} y r_2:{z=0 \text{ y pasa por los puntos }A(3,0,0) \text{ y } B(0,4,0)}

Oposiciones Extremadura. Badajoz (2000). Ejercicio 3: Volumen de una superficie reglada.

Las superficies regladas son aquellas superficies que se definen por el movimiento de una recta que se apoya en dos curvas. Los cilindros de revolución son ejemplos de superficies regladas, los conos de revolución también. Pero no solamente aquellas que puedan provenir de la revolución de una recta alrededor de un eje son superficies regladas. Imaginemos un cilindro en el que las bases, (la «tapa» inferior y la superior) fueran dos elipses, es decir, dos superficies limitadas por dos elipses. En este caso no estamos con una superficie de revolución pero sí con una superficie reglada.

La dificultad de este problema es saber representar correctamente el sólido del cual queremos calcular su volumen. Después, tendremos que resolver una integral triple, de la que lo más difícil será calcular los límites de integración.

Problema 4

El cuarto y último problema es de probabilidad. Es un sencillo ejercicio de diagramas en árbol.

De una urna que contiene a bolas blancas y b bolas negras, dos jugadores hacen extracciones alternativas reemplazando cada uno su bola antes de la siguiente extracción. Gana el jugador que consigue sacar primero una bola blanca.
Calcula la probabilidad de ganar que tiene cada uno de los jugadores.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 4: Probabilidad

La mayor complicación que os encontraréis aquí es que tendréis que efectuar la suma de los infinitos términos de una progresión geométrica. El desarrollo de las probabilidades hasta llegar a las sumas infinitas es sencillo. Aplicando Laplace y el sentido común se llega sin dificultad al resultado.

Si quieres hacer algún comentario o alguna sugerencia puedes hacerlo rellenando el siguiente formulario:

Oposiciones Matemáticas Castilla la Mancha. Toledo 2018

Hola buenas. En esta entrada voy a resolver los problemas de la prueba práctica de la Oposición de Matemáticas de Secundaria en Castilla la Mancha, en el año 2018 y más concretamente en Toledo. Podéis descargar la prueba aquí.

Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes.

Bueno, retomemos este práctico. En esta ocasión fueron tres problemas. Es cierto que no tan complicados, por lo menos a mi modo de ver, como los vistos en otras convocatorias; sin embargo es también cierto que había que conocer algunos conceptos básicos de Probabilidad y Estadística o también algunas ideas sobre Teoría de Números.

Antes de ver los vídeos, mi consejo es que intentéis hacer los ejercicios. Sé que en muchos casos apenas se encuentra tiempo; pero es que la única forma de aprender a resolver problemas es resolviendo problemas. Esto puede parecer de Perogrullo, pero de Perogrullo o no, os puedo asegurar que no existe otra manera.

Todos los métodos que podáis aprender, todos los procedimientos que podáis leer o estudiar en libros que “teóricamente” os enseñen a resolver problemas pasan por afirmar que la única forma de conseguirlo es resolviéndolos.

Por otra parte, a mí me gustaría añadir un pequeño consejo cuando os plantéis delante de uno; bien sea en la misma oposición o en casa, estudiando: leed el problema tranquilamente, entendedlo, analizadlo; y cuando estéis seguros de que lo comprendéis al dedillo, entonces plantearos formas de resolución de principio al fin, examinando el tiempo que podáis dedicar a cada forma y si con ella podréis acabar de resolverlo completamente. Dedicad a esta tarea varios minutos, hasta quince incluso; porque os aseguro que aunque penséis que es tiempo perdido, no lo será; sino que os permitirá cribar convenientemente las distintas posibilidades que tengáis para resolverlo, y hacerlo en mucho menor tiempo del que hubierais tardado en otro caso.

Problema 1: Teoría de Números

El primero de los ejercicios, uno relacionado con la teoría de números, con múltiplos y divisores, o con la teoría de grupos y anillos módulo un número entero, no era excesivamente complicado. Había que estudiar caso por caso, pero incluso así, el número de casos con que nos encontrábamos no suponía que el problema se alargase en demasía en el tiempo. Si se trataba con orden y lógica se podía resolver en no más de treinta minutos, lo que aparentemente permitía continuar con buenas perspectivas con el resto de ejercicios.

El problema decía así:

Demuestra que todos los términos de la sucesión \{a_n\}_n> 2 son múltiplos de 600, siendo:

\pmb{a_n=(n^2-1)(n^2+1)(n^4-16)n^2}

La forma de resolverlo pasaba por descomponer en factores primos el numero 600, y después comprobar que cualquiera de los términos de la sucesión contenía en su descomposición al menos los mismos factores elevados también al exponente en el que se encuentran en 600. Como dije antes no es difícil, y si se hace ordenadamente tampoco demasiado largo.

Otra posibilidad de resolución podría ser por inducción sobre n\in \mathbb{N}; aunque reconozco que este método no he llegado siquiera a intentarlo. Puedes intentarlo tú a ver que sale; mi percepción ante el problema y el procedimiento me dice que puede ser algo más difícil.

Problema 2: Geometría del Triángulo

Este segundo problema es el más elegante de los tres, el mas divertido, el más entretenido, y como podéis adivinar el que más me ha gustado.

Se trata de un problema eminentemente geométrico; concretamente se trata de demostrar que una recta, o un segmento que divide a un triángulo en dos polígonos de la misma área y el mismo perímetro debe pasar por el incentro del triángulo. Aunque lo redactaré después exactamente como se expuso en el examen, en las líneas anteriores ya ha quedado perfectamente descrito.

Es un problema elegante porque con imaginación y fantasía; y con conceptos sencillos como que el área de un triángulo es la base por la altura partido por dos, o que la bisectriz de un ángulo es el lugar geométrico de los puntos que equidistan de los lados del ángulo; podemos llegar fácilmente a su demostración.

El problema dice:

Demostrar que una recta d, que divide a un triángulo \pmb{ABC} en dos polígonos del mismo perímetro y de la misma área debe pasar por el centro de la circunferencia inscrita al triángulo \pmb{ABC}.

En el vídeo podéis ver su resolución, sin embargo yo recomiendo que intentéis resolverlo por vosotros mismos. Hacedlo, utilizando los conceptos básicos necesarios que describí antes, y a ver qué os sale.

Problema 3: Probabilidad y Estadística

El tercer problema es de Probabilidad y Estadística. Es el más feo de los tres. Un ejercicio puramente de integrales de funciones de densidad, de funciones de distribución y del cálculo de las medidas de una distribución continua: media, varianza, moda y mediana.

Si conocemos las fórmulas elementales de las distribuciones continuas entonces no deberíamos tener muchos problemas en su resolución.

El problema dice así:

Una variable aleatoria {\chi} tiene una función de densidad dada por:

    \[\pmb{f(x)=\left\{ \begin{array} {cc} 0 & \text{si } x\leq 0 \\ kxe^{-x^2} & \text{si } x>0 \end{array}}\]

a) Hallar el valor de {k} para que. en efecto, sea una función de densidad de probabilidad.

b) Hallar la función de distribución de la variable aleatoria \pmb{\chi} y calcular {P(-1\leq \chi \leq 1)}.

c) Hallar el valor de la moda y de la mediana.

d) Hallar el valor esperado de {\chi} y su varianza.

Con estos vídeos se resuelven los tres problemas de la Oposición de Matemáticas de Secundaria en Castilla la Mancha, más concretamente en Toledo en junio de 2018.

Espero que se hayan entendido bien, y que os ayuden en vuestra empresa de conseguir aprobar.

Por último, en los siguientes enlaces tenéis las entradas a mi blog de otras pruebas prácticas que también las he resuelto:

Castilla la Mancha (Albacete 2015)

Comunidad Valenciana (Alicante 2009)

Extremadura (Badajoz 2000)

Castilla y León (2018)

Un saludo.

Jorge.

Oposiciones Matemáticas Alicante 2009. Parte Práctica

En este post encontraréis vídeos en los que resuelvo los problemas de la parte práctica de las Oposiciones de Matemáticas en la Comunidad Valenciana; y más concretamente en el 2009 y en la provincia de Alicante.

Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes.

Si os interesan también otras pruebas prácticas os dejo algunos enlaces con otras entradas de exámenes también resueltos:

Oposiciones Matemáticas Albacete 2015

Oposiciones Matemáticas Toledo 2018

Extremadura (Badajoz 2000)

Castilla y León (2018)


Aquí os vais a encontrar un total de cinco vídeos. En el primero hago solamente una introducción a los ejercicios que se proponen; y en él hablo y comento cada uno de ellos sin entrar en profundidad en su forma de resolución.

Los restantes contienen los problemas resueltos. Reconozco que con diferente dificultad cada uno de ellos; algo que ya comento en los vídeos. En definitiva, espero que no tengáis problemas en las explicaciones; pero como siempre digo, podéis enviarme una observación en el canal de youtube donde estarán colgados, o bien en este blog, o bien en el correo electrónico; lo que prefiráis.

Introducción.


Problema nº1

Sea M_{3}(\mathbb{R}) el espacio vectorial de las matrices reales cuadradas de orden 3,

(i) Demostrar que el conjunto A de las matrices reales antisimétricas de orden 3 es un subespacio vectorial de M_{3}(\mathbb{R}) y obtener razonadamente una base canónica de este subespacio.

(ii) Si A\longrightarrow P_3(\mathbb{R}) es la aplicación lineal definida mediante

    \[\text{T}\left \{ \left (\begin{array} {ccc} 0&a&b\\-a&0&c\\-b&-c&0 \end{array} \right) \right \}:=ax+bx^2+cx^3\]

hallar la matriz de esta aplicación lineal asociada a la base canónica de A y a la  base canónica \{1,x,x^2,x^3\} de P_3(\mathbb{R}), y escribir la ecuación matricial de la aplicación lineal.

(iii) Hallar el núcleo y la imagen de esta aplicación lineal y demostrar que es un isomorfismo sobre el conjunto imagen Im(\text{T}).

(iv) Comprobar que se cumple el Teorema de las dimensiones.

Este problema se resuelve utilizando el Álgebra Lineal y los conceptos mínimos sobre homomorfismos entre espacios vectoriales. Es sabido que todos los espacios vectoriales de una misma dimensión son isomorfos; para eso basta definir una aplicación que lleve una base de uno de ellos en una base del otro y comprobar que dicha aplicación es en realidad biyectiva. Aplicando el teorema que afirma que V/ker f es isomorfo a Im f, siendo f un homomorfismo se llega sin dificultad al resultado que pide el problema.


Problema nº2

Sean dos segmentos AB y BC de igual longitud d que están articulados por el punto B. El punto A está sobre el origen de coordenadas y el punto C varía sobre el eje OX positivo. Encontrar la ecuación del lugar geométrico de un punto P situado sobre el segmento BC a una distancia p del punto C. Dibujar el lugar.

Es, con diferencia, el de mayor dificultad de los cuatro. Sin embargo en apariencia no parece muy complicado pues enseguida me di cuenta que el lugar geométrico era una elipse, o en este caso (aunque luego no lo digo en el  vídeo), un cuarto de elipse. Pero cuando se trabaja con ecuaciones de segundo grado con cuatro o cinco variables la «cosa» se complica; y a mí se me complicó.

Dediqué al problema más tiempo que a lo dedicado a los otros tres juntos; desde luego bastante más de tres horas, y utilizando las ecuaciones cartesianas no conseguí resolverlo.

Cuando finalmente obtuve un resultado que parecía válido me di cuenta que no era correcto; así que tuve que volver a empezar, pero ahora cambié las coordenadas cartesianas por coordenadas polares; y con la demostración de un resultado de trigonometría aplicado a triángulos isósceles llegué a la elipse buscada.


Problema nº3

Calcular la longitud del arco de curva y=\ln\frac{e^x-1}{e^x+1} comprendido entre los puntos de abscisa 2 y 4.

En este ejercicio se pide calcular la longitud del arco de una curva (que resulta ser una función), entre dos puntos de abscisa 2 y 4. Es necesario conocer la fórmula que nos da la longitud, que viene dada por una integral; y es necesario también conocer el cambio de variable a efectuar, así como la resolución de integrales racionales. Yo no conozco de memoria dicha fórmula, y en el vídeo muestro cómo se puede deducir utilizando los conocimientos mínimos sobre integrales definidas, áreas y longitudes.


Problema nº4

Se lanza un dado hasta que aparezcan tres resultados distintos. Calcular el número medio de lanzamientos que hay que realizar.

Este último problema es de probabilidad en el que utilizo la Regla de Laplace. Para calcular tanto los casos favorables como los posibles utilizo la Combinatoria explicando cada uno de los pasos.

Sin embargo la cuestión que plantea el problema no es la probabilidad de que los lanzamientos se detengan en la tirada enésima, sino la media del número de lanzamientos que hay que realizar. Como no tenemos un número máximo de tiradas, éste nunca acaba, lo que conlleva la suma de una serie de infinitos términos. Para sumar dicha serie utilizo las series de potencias y algunos teoremas de integrales o derivadas de series uniformemente convergentes.

Espero que todos los vídeos os hayan gustado, que se hayan entendido sin demasiados problemas y que os faciliten la tarea de estudiar la parte práctica de la oposición.

Ya sabéis que podéis hacer cualquier comentario en el blog, en el canal de Youtube, o en mi correo electrónico.

Un saludo.

Jorge

Oposiciones Matemáticas Albacete 2015. Parte Práctica

En este post voy a resolver los problemas de la parte práctica de las Oposiciones de Matemáticas en Castilla la Mancha; y más concretamente en la provincia de Albacete en el 2015. Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes. En cada uno de los tres vídeos resolveré uno de los problemas con los que se enfrentaron los opositores de ese año. Tienen dificultades diferentes; así mientras que el primer y tercer problema son asequibles en el tiempo que tienes para resolverlos; el segundo problema es de mucha mayor dificultad. Es obvio que el nivel de los problemas es la mejor forma de discriminar a los que tienen un mayor conocimiento de las Matemáticas de los que no la tienen. Sin embargo, en ocasiones aumentar mucho la dificultad no consigue discriminar sino todo lo contrario; puesto que el porcentaje que llega a resolverlo es prácticamente nulo. En las siguientes líneas tenéis los tres problemas y los vídeos que los resuelven. Espero que se entiendan y que os ayuden.
Problema nº 1
Sea R la región del plano definida por la parte positiva de los ejes de coordenadas y la curva y=2\cos x en 0\leq x \leq \frac{\pi}{2}. Halla el valor de a tal que la curva y=a\sin x, divida la región R en dos regiones de igual área. Este problema se resuelve utilizando el concepto de integral definida como el área encerrada entre una curva y el eje X; o como el área encerrada entre dos curvas.
Problema nº2
Demostrar la veracidad o falsedad de la siguiente afirmación: «Para todo número n\in \mathbb{N}, se puede encontrar un conjunto de n números naturales consecutivos que no contiene ningún número primo.» En este vídeo demuestro que tal resultado es cierto. La forma de hacerlo es más propia de idea feliz que de seguir un procedimiento propio en una demostración matemática. Yo tardé en resolverlo bastante más que los otros dos juntos. La Reducción al Absurdo no me funcionó, la Inducción Matemática tampoco, y las clases \mathbb{Z}_n aunque más cerca, no llegaron a demostrarlo. La inspiración vino del aire y de repente.
Problema nº3
En el triángulo acutángulo ABC; AH, AD y AM son, respectivamente, la altura, la bisectriz y la mediana que parten de A estando H, D y M en el lado BC. Si las longitudes de AB, AC y MD son, respectivamente, 11, 8 y 1, calcula la longitud del segmento DH. Este problema de triángulos es finalmente de Trigonometría. Los cálculos empiezan por utilizar el Teorema del Seno, y acabar con el Teorema de Pitágoras. Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces: Como siempre digo; si algo no ha quedado claro o si queréis hacer algún comentario, podéis dejar una nota o bien enviarme un correo electrónico: jorgemorra@outlook.es. Un saludo. Jorge.