Tema 6. Números reales. Topología de la recta real.

Cuando se habla de los números y se utilizan sus propiedades, no se cae en la cuenta de que para la mayoría de individuos, el número 2, ó el 2,5 ó \sqrt{2} para los más aventurados, no son más que la ejecución de un pensamiento, tan trivial, tan evidente que no se atreven a considerarlos como meramente un producto humano. Sin embargo, aunque la existencia pueda parecer garantizada cuando son imaginados, la comunidad matemática va aún más allá. Para el matemático es necesario concebirlos de alguna forma; o bien construyéndolos o bien con la introducción de un conjunto de axiomas.

La aritmetización de los números reales fue esencial en la posterior fundamentación del análisis. Téngase en cuenta que a lo largo de los siglos XVII y XVIII la Matemática avanzó principalmente en el cálculo sin tener una base consistente en la que afianzarse. Recordemos a este respecto algunos de los resultados de Euler o el mismo Gauss; en los que utilizaban expresiones de límite, suma infinita, pequeño, o se acerca, cuando querían hablar de conceptos que aunque identificaban con claridad, no eran capaces de formalizar matemáticamente.

El problema con el que se encontraban sistemáticamente los matemáticos de la época fue en esencia que desconocían la forma intrínseca de los números reales. Parecía lógico asignar a cada número un punto de la recta, pero no estaba nada claro si la recta funcionaba como todos suponían; es decir como un continuo, sin poros. Bolzano y Cauchy fueron precursores de la aritmetización de los números reales con la introducción de un concepto más formal de límite demostrando con ello el siguiente teorema:

»Si f es una función real y continua sobre un intervalo cerrado tal que toma un valor negativo en uno de los extremos del intervalo y positivo en el otro entonces existe un valor en el interior tal que su imagen es cero»

De hecho fue Bolzano el que introdujo la idea que luego formalizó Cauchy de que en las sucesiones convergentes los elementos tenían que distar tan poco como se quisiera a partir de un cierto momento. Además introdujo la idea, aceptada después, de que un conjunto acotado superiormente tenía que tener un valor que se considerara la menor de dichas cotas superiores

El rigor y la fundamentación de lo que se exponía y demostraba en cuanto a los números reales no llegó hasta finales del siglo XIX. La idea que subyacía detrás de todo era la necesidad de completar el conjunto de los reales de alguna forma. Tanto Cantor, utilizando las sucesiones de Cauchy, como Dedekind con un nuevo concepto denominado cortaduras, lo hicieron utilizando a los racionales. Hilbert, sin embargo, lo hizo de forma axiomática, asignándoles un conjunto de propiedades que los convertía en el único cuerpo conmutativo, totalmente ordenado , arquimediano y completo.

Se exponen a continuación las formas más importantes de construir \mathbb{R}:

Cortaduras de Dedekind

Un número real es un conjunto \alpha de números racionales, con las cuatro propiedades siguientes:

  • Si x está en \alpha e y es racional con y<x entonces y también está en \alpha
  • \alpha\neq \emptyset.
  • \alpha\neq \mathbb{Q}
  • No existe ningún elemento máximo en \alpha; dicho de otro modo, si x está en \alpha, entonces existe algún y en \alpha con y>x.

Sucesiones de Cauchy

Siendo {x_n},{y_n} dos sucesiones de Cauchy de números racionales, diremos que {x_n}\sim {y_n} si y solamente si {x_n-y_n}\rightarrow 0.

Se define entonces:
\R=\frac{C(\mathbb{Q})}{\sim}
siendo C(\mathbb{Q}) la familia de las sucesiones de Cauchy de los números racionales.

Por decimales

Se define un número real como un par (a,{b_n}), donde a\in\Z y {b_n} es una sucesión de números naturales del 0 al 9, con la condición de que la sucesión no es continuamente 9, es decir, que a partir de un elemento el 9 no se repite indefinidamente. Podemos representar:
\left(a,{b_n}\right)=a+\sum_{n=1}^\infty b_n\cdot 10^{-n}


En cualquiera de los tres casos se están construyendo los reales a partir de los racionales.

Veremos a lo largo del tema que \mathbb{R} es el único cuerpo, salvo isomorfismo, que está completamente ordenado y es arquimediano, además de propiedades tan importantes como que es metrizable y posee la propiedad de la mínima cota superior (axioma del supremo). Dicha propiedad es equivalente a la de la máxima cota inferior y es la que dota de completitud a \mathbb{R}.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 6. Números Reales. Topología de la recta real.

Tema 5. Números Racionales

Un dominio de integridad es un anillo conmutativo unitario sin divisores de cero; y dado un cuerpo \mathbb{K}, todo anillo de él es un dominio de integridad. El problema que nos planteamos es si todo dominio de integridad se puede considerar como subanillo de un cuerpo. La respuesta es cierta y a dicho cuerpo se le llama el cuerpo de fracciones de un dominio de integridad.

Pero además, cuando trabajamos con los números enteros, cuya estructura es precisamente la de un anillo conmutativo sin divisores de cero, nos encontramos con que la ecuación ax=b no siempre tiene solución. Es trivial comprobar que solamente la tendrá si a es divisible entre b. Como esto no siempre es posible, nos encontramos con la necesidad de dar solución al problema en todos los casos, no solamente en aquellos en los que b|a.

El procedimiento que vamos a utilizar es estándar. Básicamente vamos a construir un cuerpo, cuya definición es el cuerpo de fracciones de un dominio de integridad.

Esta forma se utiliza para cualquier estructura que sea dominio, y en nuestro caso el objetivo es construir el cuerpo minimal que contenga a \mathbb{Z}. En el siguiente punto del tema se definirá \mathbb{Q} como un conjunto de cocientes del tipo \frac{a}{b} con a,b\in\mathbb{Z} y b\neq 0. Parece bastante obvio que todo cuerpo que contenga a los números enteros debe contener a los cocientes anteriores, por tanto debería contener a \mathbb{Q}. Pero además se puede demostrar que dos cuerpos de fracciones del mismo dominio son isomorfos, lo que inevitablemente nos llevará a la unicidad de \mathbb{Q}, y a que sea éste el cuerpo minimal que contenga a \mathbb{Z}.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 5. Números Racionales

Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía

Espacios vectoriales

Los espacios vectoriales son estructuras algebraicas que surgen de la extensión del concepto de grupo abeliano al que se le ha añadido una ley de composición externa. La idea de esta operación es permitir que los elementos de un grupo puedan ser modificados, sin perder la esencia del elemento. Dicho cambio dotará al vector de un nuevo concepto que se denominará módulo o norma.

Subespacios vectoriales

La idea de subespacio vectorial es la de un espacio vectorial dentro de otro espacio vectorial, en el que conservemos las mismas leyes de composición. Cuando el subespacio se encuentra generado por un único vector se llamará recta; si lo está por dos vectores linealmente independientes se llamará plano; y en general si lo está por más vectores, se hablará de la dimensión del subespacio. Por ejemplo, cuando sea una recta, todos sus elementos serán el producto de su vector generador por un elemento del cuerpo. Podríamos escribirlo así:
\mathcal{S}=\{\alpha \cdot u:u\in\mathcal{V},\alpha\in\mathbb{K}\}

Nótese la analogía del subgrupo, S generado por un único elemento a de un grupo, G:
S=\{0,a,-a\}
Es claro que el subgrupo está formado únicamente por tres elementos, y sin embargo \mathcal{S} contiene infinitos vectores, pero podemos fijarnos mejor y descubrir que al aplicar sobre los elementos de este subgrupo una ley externa que modifique el tamaño del elemento del grupo, obtendremos los vectores de \mathcal{S}. Concluiríamos que \mathcal{S} es un subespacio vectorial que proviene de aplicar una ley de composición externa «\cdot» sobre un cuerpo \mathbb{K} al subgrupo G.

Variedades lineales.

Una de las dificultades que tiene este tema no es tanto la complejidad de las demostraciones, sino la diferencia en las definiciones que se van a desarrollar. En Matemáticas existen conceptos que son tratados por unos y otros autores de forma distinta. En el caso de las variedades lineales, así ocurre.

Por una parte podemos encontrarnos con textos que definen una variedad lineal como un subespacio vectorial sin más; en otros se identifica una variedad lineal con un subconjunto de un subespacio vectorial que no conserva la estructura en sí, pero que sí tiene la forma de un espacio vectorial; en otros como las soluciones de un sistema de ecuaciones lineales; e incluso encontramos autores que definen las variedades lineales como elementos de un espacio cociente.

Nosotros vamos a decantarnos por la segunda opción, vamos a considerar que las variedades lineales son como subespacios vectoriales, sin llegar a serlo. En el fondo no es importante el cómo se definan, sino las propiedades y los resultados que podemos alcanzar con ellos.

Aplicaciones entre espacios vectoriales

Cuando se estudia un conjunto con una o varias leyes de composición, el siguiente paso natural es estudiar las aplicaciones que conservan dicha estructura. En el caso de los espacios vectoriales, éstas se denominan aplicaciones lineales u homomorfismos. Aunque se enunciará después, el conjunto de los endomorfismos de un espacio vectorial \mathcal{V} tiene a su vez estructura de álgebra sobre el mismo cuerpo sobre el que se define \mathcal{V}.

Curiosamente es posible demostrar, aunque no será tratado en este tema, que existe un isomorfismo entre la familia de los endomorfismos de \mathcal{V} y la familia de las matrices n\times n, donde n es la dimensión del espacio vectorial. Este isomorfismo nos lleva a afirmar que toda variedad lineal puede ser identificada como la imagen inversa de un vector por una aplicación lineal concreta. Dicha aplicación lineal está en correspondencia biunívoca con una matriz, y ésta con un sistema de ecuaciones lineales.

Teoremas de isomorfía

Por último queríamos hacer especial mención a los teoremas de isomorfía. Como ya hemos expuesto, algunos autores consideran solamente un teorema de isomorfía cuando se habla de espacios vectoriales, y otros consideran que hay tres. De hecho el nombre del tema hace mención a un único teorema. Nosotros, sin embargo, al haber considerado que en términos generales un espacio vectorial puede verse como la extensión de un grupo, vamos a introducir y demostrar los tres teoremas de isomorfía de grupos, aplicados en este caso sobre espacios vectoriales.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía.

Tema 4. Números enteros. Divisibilidad. Números primos. Congruencias.

La definición de los números enteros como el conjunto de las clases de equivalencia de una relación, resuelve el problema de la resolución de ecuaciones dentro del conjunto de los números naturales. Las ampliaciones o extensiones que tienen los números desde los naturales a los complejos, pueden verse como consecuencia de la resolución de algunas ecuaciones que en sus conjuntos originales no encontraban solución.

El primer caso lo tenemos delante al intentar resolver en \mathbb{N} la ecuación n+4=3. El conjunto de los números enteros surge, además de ser una consecuencia de la axiomatización de la Aritmética, (uno de los objetivos de Hilbert), como solución al problema de la resolución de cualquier ecuación con números naturales.

Esta extensión consigue ampliar la estructura de \mathbb{N} a una de grupo conmutativo con la adición, añadiendo incluso un elemento neutro (el cero). Además con la operación »producto» (ya definida sobre \mathbb{N}), y la demostración de algunas de sus propiedades, el conjunto de los enteros obtendrá una nueva estructura que será la de Dominio de Integridad.

La definición de divisibilidad permite introducirnos dentro del mundo de los números primos y del Teorema Fundamental de la Aritmética, así como de la demostración del Teorema de Euclides.

La parte más interesante del tema se encuentra al abordar la cantidad de números primos que existen. La conjetura de Riemann junto con la demostración de Euler de que la suma de los inversos de los primos es infinita nos acerca a una aproximación bastante real del cardinal de dicho conjunto.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 4. Números enteros. Divisibilidad. Números primos. Congruencias.

Tema 3. Técnicas de recuento. Combinatoria

La Combinatoria es una de las nuevas ramas de la Matemática que se encarga de estudiar los distintos agrupamientos que pueden realizarse con los elementos de un conjunto sin tener en cuenta el tipo, forma, color, etc, de los mismos.

Los comienzos de la Combinatoria datan del siglo XVII con los primeros estudios sobre probabilidades de Fermat y Pascal. Éste último es el primero en darse cuenta la relación que existe entre los números combinatorios y la fórmula del desarrollo de un binomio. Recordemos a este respecto que los elementos con los que se construye su famoso triángulo, no son más que una serie de números combinatorios.

Por otra parte en «Disertatio de Arte Combinatoria» de 1666, Leibnitz (1646-1716) introduce los primeros conceptos sobre permutaciones y combinaciones, dando incluso algunas de las primeras fórmulas reconocidas con números combinatorios.

Pero el principal precursor de esta rama de la Matemática fue Jackes Bernouilli (1654-1705), quien en su obra «Arte de la Conjetura, publicada a título póstumo, desarrolla toda una teoría general de permutaciones y combinaciones aplicadas principalmente a la teoría de juegos, pero que se extiende a otros muchos problemas de la época y posteriores. Es precisamente Bernouilli quien por primera vez introduce y demuestra el teorema binomial para exponentes enteros:(a+b)^n=\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k

Poco después fue Euler, quien en «Departitione Numerotum» realiza un estudio sobre las distintas formas en las que se puede escribir un entero positivo como suma de enteros positivos, e incide de nuevo en toda la teoría combinatoria que había hasta el momento. Este problema, que se llamó poco después una partición del natural n, y cada uno de los sumandos una parte; lo plantearemos en secciones posteriores de este tema; concretamente cuando estudiemos las distribuciones y los llenados.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 3. Técnicas de recuento. Combinatoria.