Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía

Espacios vectoriales

Los espacios vectoriales son estructuras algebraicas que surgen de la extensión del concepto de grupo abeliano al que se le ha añadido una ley de composición externa. La idea de esta operación es permitir que los elementos de un grupo puedan ser modificados, sin perder la esencia del elemento. Dicho cambio dotará al vector de un nuevo concepto que se denominará módulo o norma.

Subespacios vectoriales

La idea de subespacio vectorial es la de un espacio vectorial dentro de otro espacio vectorial, en el que conservemos las mismas leyes de composición. Cuando el subespacio se encuentra generado por un único vector se llamará recta; si lo está por dos vectores linealmente independientes se llamará plano; y en general si lo está por más vectores, se hablará de la dimensión del subespacio. Por ejemplo, cuando sea una recta, todos sus elementos serán el producto de su vector generador por un elemento del cuerpo. Podríamos escribirlo así:
\mathcal{S}=\{\alpha \cdot u:u\in\mathcal{V},\alpha\in\mathbb{K}\}

Nótese la analogía del subgrupo, S generado por un único elemento a de un grupo, G:
S=\{0,a,-a\}
Es claro que el subgrupo está formado únicamente por tres elementos, y sin embargo \mathcal{S} contiene infinitos vectores, pero podemos fijarnos mejor y descubrir que al aplicar sobre los elementos de este subgrupo una ley externa que modifique el tamaño del elemento del grupo, obtendremos los vectores de \mathcal{S}. Concluiríamos que \mathcal{S} es un subespacio vectorial que proviene de aplicar una ley de composición externa «\cdot» sobre un cuerpo \mathbb{K} al subgrupo G.

Variedades lineales.

Una de las dificultades que tiene este tema no es tanto la complejidad de las demostraciones, sino la diferencia en las definiciones que se van a desarrollar. En Matemáticas existen conceptos que son tratados por unos y otros autores de forma distinta. En el caso de las variedades lineales, así ocurre.

Por una parte podemos encontrarnos con textos que definen una variedad lineal como un subespacio vectorial sin más; en otros se identifica una variedad lineal con un subconjunto de un subespacio vectorial que no conserva la estructura en sí, pero que sí tiene la forma de un espacio vectorial; en otros como las soluciones de un sistema de ecuaciones lineales; e incluso encontramos autores que definen las variedades lineales como elementos de un espacio cociente.

Nosotros vamos a decantarnos por la segunda opción, vamos a considerar que las variedades lineales son como subespacios vectoriales, sin llegar a serlo. En el fondo no es importante el cómo se definan, sino las propiedades y los resultados que podemos alcanzar con ellos.

Aplicaciones entre espacios vectoriales

Cuando se estudia un conjunto con una o varias leyes de composición, el siguiente paso natural es estudiar las aplicaciones que conservan dicha estructura. En el caso de los espacios vectoriales, éstas se denominan aplicaciones lineales u homomorfismos. Aunque se enunciará después, el conjunto de los endomorfismos de un espacio vectorial \mathcal{V} tiene a su vez estructura de álgebra sobre el mismo cuerpo sobre el que se define \mathcal{V}.

Curiosamente es posible demostrar, aunque no será tratado en este tema, que existe un isomorfismo entre la familia de los endomorfismos de \mathcal{V} y la familia de las matrices n\times n, donde n es la dimensión del espacio vectorial. Este isomorfismo nos lleva a afirmar que toda variedad lineal puede ser identificada como la imagen inversa de un vector por una aplicación lineal concreta. Dicha aplicación lineal está en correspondencia biunívoca con una matriz, y ésta con un sistema de ecuaciones lineales.

Teoremas de isomorfía

Por último queríamos hacer especial mención a los teoremas de isomorfía. Como ya hemos expuesto, algunos autores consideran solamente un teorema de isomorfía cuando se habla de espacios vectoriales, y otros consideran que hay tres. De hecho el nombre del tema hace mención a un único teorema. Nosotros, sin embargo, al haber considerado que en términos generales un espacio vectorial puede verse como la extensión de un grupo, vamos a introducir y demostrar los tres teoremas de isomorfía de grupos, aplicados en este caso sobre espacios vectoriales.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 12. Espacios vectoriales. Variedades lineales. Aplicaciones entre espacios vectoriales. Teorema de isomorfía.

Oposiciones Matemáticas. Extremadura. Badajoz (2000)

[mathjax]

En esta entrada voy a resolver el ejercicio práctico de las oposiciones de Matemáticas en la Comunidad de Extremadura, en Badajoz, en el año 2000.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

También podéis encontrar temas desarrollados en los enlaces:

Este práctico constaba de cuatro problemas o ejercicios. Ninguno de ellos especialmente complicado, y con tiempo os daréis cuenta que podéis resolverlos sin excesivas complicaciones.

Problema 1

El primer de ellos es un problema de espacios duales.

Sea E el espacio vectorial de todos los polinomios con coeficientes reales de grado menor o igual que dos y sea \{w_1,w_2,w_3\} la base dual de la base canónica \{1,x,x^2\}.

Consideramos la base del espacio dual E^* definida por las aplicaciones \overline{w_1}, \overline{w_2} y \overline{w_3}:

    \[\overline{w}_1(p(x)):=\int_0^1p(x)dx\]

    \[\overline{w}_1(p(x)):=\int_0^1x\cdot p(x)dx\]

    \[\overline{w}_3(p(x)):=\int_0^1x^2\cdot p(x)dx\]

(a) Halla las coordenadas de \overline{w}_1, \overline{w}_2 y \overline{w}_3 en la base \{w_1,w_2,w_3\}.

(b) Determina la base de E para la que \{\overline{w}_1,\overline{w}_2,\overline{w}_3\} es su base dual.

Su resolución pasa por conocer conceptos importantes en Matemáticas, como es el de espacio dual. El conjunto de las aplicaciones lineales de un espacio vectorial sobre el cuerpo en el que está construido tiene estructura a su vez de espacio vectorial; y es lo que se denomina el «espacio dual» asociado al espacio vectorial original. La demostración de que verifica las propiedades de e.v. no es complicada e invito a que lo intentéis vosotros mismos sin necesidad de consultar ningún libro de Algebra Lineal. Es curioso a su vez, que la dimensión que tiene dicho espacio coincide, en el caso de espacios vectoriales de dimensión finita, con la dimensión de su espacio original. Sin embargo en el caso de e.v. de dimensión infinita, este hecho no es cierto.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Espacios Duales

Por otra parte, aunque en el problema solo se incide sobre la parte algebraica, siempre se puede considerar la parte topológica. En este caso, cuando trabajemos con espacios vectoriales topológicos, es decir, espacios vectoriales en los que asociamos una topología (dada habitualmente por una norma o una métrica), bien espacios de Banach, o espacios de Hilbert; los espacios duales asociados también mantienen la misma dimensión e incluso topologías análogas siempre que ésta sea finita; y distintas siempre que las dimensiones sean infinitas. Los e.v.t. se estudian principalmente en los textos de Análisis Funcional.

Problema 2

El segundo problema de este examen práctico es de Geometría en el plano. Consiste en calcular el área de un polígono definido a partir de otro del cual ya conocemos su superficie. Una vez que hayamos hecho el dibujo, que por otra parte no es muy difícil, el procedimiento para resolver el problema no es nada complicado. Se trata de «dividir» la superficie a calcular en triángulos y calcular el área de dichos triángulos. Si se siguen los pasos adecuados se llega al resultado sin excesiva complicación.

Sea un cuadrilátero convexo de vértices ABCD y superficie Sm^2. Se prolonga el lado AB por el punto B hasta un punto M de forma que la longitud de BM se igual a la mitad de la longitud del lado AB. Análogamente se prolonga el lado BC por el punto C hasta el punto N de forma que CN=\frac{1}{2}BC. El lado CD se polonga por D hasta P tal que DP=\frac{1}{2}CD y por ultimo el lado DA se prolonga por A hasta Q, tal que AQ=\frac{1}{2}DA.
Halla la superficie del cuadrilátero de vértices MNPQ.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 1: Geometría

Como en todos los ejercicios que resuelvo en los vídeos, mi recomendación es que intentéis hacerlos vosotros antes de ver la resolución. A los problemas, y esto es algo que ya me habéis oído decir en numerosas ocasiones, hay que dedicarles mucho tiempo; hay que empaparse de ellos porque es la única forma de aprender a hacerlos.

Problema 3

En el tercer problema nos piden que calculemos el volumen de un sólido definido a partir de los tres planos coordenados y del movimiento de una recta que se apoya en otras dos rectas. Es una superficie reglada. Es posiblemente el ejercicio más difícil de este práctico.

Calcula el volumen del sólido limitado por los planos cartesianos y por la superficie reglada engendrada por el movimiento de una recta que se conserva paralela al plano XOZ, apoyándose en las rectas r_1:{x=0,z=2} y r_2:{z=0 \text{ y pasa por los puntos }A(3,0,0) \text{ y } B(0,4,0)}

Oposiciones Extremadura. Badajoz (2000). Ejercicio 3: Volumen de una superficie reglada.

Las superficies regladas son aquellas superficies que se definen por el movimiento de una recta que se apoya en dos curvas. Los cilindros de revolución son ejemplos de superficies regladas, los conos de revolución también. Pero no solamente aquellas que puedan provenir de la revolución de una recta alrededor de un eje son superficies regladas. Imaginemos un cilindro en el que las bases, (la «tapa» inferior y la superior) fueran dos elipses, es decir, dos superficies limitadas por dos elipses. En este caso no estamos con una superficie de revolución pero sí con una superficie reglada.

La dificultad de este problema es saber representar correctamente el sólido del cual queremos calcular su volumen. Después, tendremos que resolver una integral triple, de la que lo más difícil será calcular los límites de integración.

Problema 4

El cuarto y último problema es de probabilidad. Es un sencillo ejercicio de diagramas en árbol.

De una urna que contiene a bolas blancas y b bolas negras, dos jugadores hacen extracciones alternativas reemplazando cada uno su bola antes de la siguiente extracción. Gana el jugador que consigue sacar primero una bola blanca.
Calcula la probabilidad de ganar que tiene cada uno de los jugadores.

Oposiciones Matemáticas Extremadura. Badajoz (2000). Ejercicio 4: Probabilidad

La mayor complicación que os encontraréis aquí es que tendréis que efectuar la suma de los infinitos términos de una progresión geométrica. El desarrollo de las probabilidades hasta llegar a las sumas infinitas es sencillo. Aplicando Laplace y el sentido común se llega sin dificultad al resultado.

Si quieres hacer algún comentario o alguna sugerencia puedes hacerlo rellenando el siguiente formulario:

Oposiciones Matemáticas Alicante 2009. Parte Práctica

En este post encontraréis vídeos en los que resuelvo los problemas de la parte práctica de las Oposiciones de Matemáticas en la Comunidad Valenciana; y más concretamente en el 2009 y en la provincia de Alicante.

Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes.

Si os interesan también otras pruebas prácticas os dejo algunos enlaces con otras entradas de exámenes también resueltos:

Oposiciones Matemáticas Albacete 2015

Oposiciones Matemáticas Toledo 2018

Extremadura (Badajoz 2000)

Castilla y León (2018)


Aquí os vais a encontrar un total de cinco vídeos. En el primero hago solamente una introducción a los ejercicios que se proponen; y en él hablo y comento cada uno de ellos sin entrar en profundidad en su forma de resolución.

Los restantes contienen los problemas resueltos. Reconozco que con diferente dificultad cada uno de ellos; algo que ya comento en los vídeos. En definitiva, espero que no tengáis problemas en las explicaciones; pero como siempre digo, podéis enviarme una observación en el canal de youtube donde estarán colgados, o bien en este blog, o bien en el correo electrónico; lo que prefiráis.

Introducción.


Problema nº1

Sea M_{3}(\mathbb{R}) el espacio vectorial de las matrices reales cuadradas de orden 3,

(i) Demostrar que el conjunto A de las matrices reales antisimétricas de orden 3 es un subespacio vectorial de M_{3}(\mathbb{R}) y obtener razonadamente una base canónica de este subespacio.

(ii) Si A\longrightarrow P_3(\mathbb{R}) es la aplicación lineal definida mediante

    \[\text{T}\left \{ \left (\begin{array} {ccc} 0&a&b\\-a&0&c\\-b&-c&0 \end{array} \right) \right \}:=ax+bx^2+cx^3\]

hallar la matriz de esta aplicación lineal asociada a la base canónica de A y a la  base canónica \{1,x,x^2,x^3\} de P_3(\mathbb{R}), y escribir la ecuación matricial de la aplicación lineal.

(iii) Hallar el núcleo y la imagen de esta aplicación lineal y demostrar que es un isomorfismo sobre el conjunto imagen Im(\text{T}).

(iv) Comprobar que se cumple el Teorema de las dimensiones.

Este problema se resuelve utilizando el Álgebra Lineal y los conceptos mínimos sobre homomorfismos entre espacios vectoriales. Es sabido que todos los espacios vectoriales de una misma dimensión son isomorfos; para eso basta definir una aplicación que lleve una base de uno de ellos en una base del otro y comprobar que dicha aplicación es en realidad biyectiva. Aplicando el teorema que afirma que V/ker f es isomorfo a Im f, siendo f un homomorfismo se llega sin dificultad al resultado que pide el problema.


Problema nº2

Sean dos segmentos AB y BC de igual longitud d que están articulados por el punto B. El punto A está sobre el origen de coordenadas y el punto C varía sobre el eje OX positivo. Encontrar la ecuación del lugar geométrico de un punto P situado sobre el segmento BC a una distancia p del punto C. Dibujar el lugar.

Es, con diferencia, el de mayor dificultad de los cuatro. Sin embargo en apariencia no parece muy complicado pues enseguida me di cuenta que el lugar geométrico era una elipse, o en este caso (aunque luego no lo digo en el  vídeo), un cuarto de elipse. Pero cuando se trabaja con ecuaciones de segundo grado con cuatro o cinco variables la «cosa» se complica; y a mí se me complicó.

Dediqué al problema más tiempo que a lo dedicado a los otros tres juntos; desde luego bastante más de tres horas, y utilizando las ecuaciones cartesianas no conseguí resolverlo.

Cuando finalmente obtuve un resultado que parecía válido me di cuenta que no era correcto; así que tuve que volver a empezar, pero ahora cambié las coordenadas cartesianas por coordenadas polares; y con la demostración de un resultado de trigonometría aplicado a triángulos isósceles llegué a la elipse buscada.


Problema nº3

Calcular la longitud del arco de curva y=\ln\frac{e^x-1}{e^x+1} comprendido entre los puntos de abscisa 2 y 4.

En este ejercicio se pide calcular la longitud del arco de una curva (que resulta ser una función), entre dos puntos de abscisa 2 y 4. Es necesario conocer la fórmula que nos da la longitud, que viene dada por una integral; y es necesario también conocer el cambio de variable a efectuar, así como la resolución de integrales racionales. Yo no conozco de memoria dicha fórmula, y en el vídeo muestro cómo se puede deducir utilizando los conocimientos mínimos sobre integrales definidas, áreas y longitudes.


Problema nº4

Se lanza un dado hasta que aparezcan tres resultados distintos. Calcular el número medio de lanzamientos que hay que realizar.

Este último problema es de probabilidad en el que utilizo la Regla de Laplace. Para calcular tanto los casos favorables como los posibles utilizo la Combinatoria explicando cada uno de los pasos.

Sin embargo la cuestión que plantea el problema no es la probabilidad de que los lanzamientos se detengan en la tirada enésima, sino la media del número de lanzamientos que hay que realizar. Como no tenemos un número máximo de tiradas, éste nunca acaba, lo que conlleva la suma de una serie de infinitos términos. Para sumar dicha serie utilizo las series de potencias y algunos teoremas de integrales o derivadas de series uniformemente convergentes.

Espero que todos los vídeos os hayan gustado, que se hayan entendido sin demasiados problemas y que os faciliten la tarea de estudiar la parte práctica de la oposición.

Ya sabéis que podéis hacer cualquier comentario en el blog, en el canal de Youtube, o en mi correo electrónico.

Un saludo.

Jorge