Oposiciones Matemáticas. Práctico de Castilla y León (Burgos 2018).

Hola, muy buenas.

En esta entrada encontraréis los vídeos en los que resuelvo los problemas de la parte práctica de las oposiciones de Matemáticas de la comunidad de Castilla y León; concretamente del año 2018.

En su momento me llamaron la atención porque oí que la dificultad del mismo había sido excesiva. Sin embargo hasta este mes de octubre no me he decidido finalmente a resolverlos; después a hacer los vídeos, editarlos y subirlos al canal que tengo en YouTube.

Es verdad que si los comparamos los problemas con los de Madrid o de Castilla la Mancha, también del año 2018, ganan abrumadoramente, porque de media son claramente más difíciles. Dicho esto, también creo que aunque es literalmente imposible hacerlos todos en el tiempo que os dan, no es complicado hacer dos o con algo de suerte incluso tres. Es verdad también que centrarse en los más fáciles no es factible puesto que en el examen desconoces cuáles son asequibles y cuáles no. Podéis descargaros el práctico aquí.

Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces:

Problema 1

El primer problema es en el fondo sencillo. Su dificultad se encuentra esencialmente en el planteamiento.

Hallar el número de n-uplas, (a_1,a_2,...,a_n) de componentes a_i, números enteros positivos que satisfacen las tres ecuaciones siguientes:

\sum_{i=1}^n a_i =26,\;\; \sum_{i=1}^n a_i^2=72,\;\; \sum _{i=1}^n a_i^3=224

La idea consiste en resolver un sistema de ecuaciones lineales cuyas soluciones se encuentran restringidas a algunos números enteros.

Problema 2

El segundo problema es, en mi opinión, el más complicado de los cinco. Nos dan una función continua y positiva definida sobre el intervalo unidad; y después nos piden que demostremos que existe un punto en el que f(x)=f(x+f(x)). Bueno, el problema no dice exactamente esto, pero sí es su esencia.

Sea f:[0,1]\rightarrow [0,\infty] una función continua tal que f(0)=f(1)=0\forall x\in (0,1), f(x)>0. Demostrar que existe un cuadrado con dos vértices en el intervalo (0,1) del eje de abscisas y los otros dos en la gráfica de f.

Problema 3

Aquí se nos pide que realicemos el producto infinito de una sucesión recurrente. Cuando tengamos que realizar la suma de una serie infinita o un producto infinito de una sucesión, tendremos que recurrir en la mayoría de las ocasiones a conocimientos ajenos a lo que nos están pidiendo. Curiosamente en este problema no se da el caso. Podremos resolverlo recordando el producto de otra sucesión muy conocida, que es la de Viète.

Dada la sucesión (x_n)_{n\in \mathbb{N}} definida recurrentemente por x_1=\sqrt{2} y </em>\forall n\in \mathbb{N}: x_{n+1}=\sqrt{\frac{2x_n}{1+x_n}} Calcular: \prod_{n=1}^\infty x_n

Problema 4

Los problemas 4 y 5 forman parte del mismo ejercicio, lo que significa que puntuando sobre 10, cada uno de ellos vale 1,25. El 4º es sobre un lugar geométrico, en el que se utilizan conceptos de geometría de la circunferencia y del triángulo. No es nada difícil, podéis comprobarlo vosotros mismos.

Sea \mathcal{C} una circunferencia y en ella dos puntos distintos, no diametralmente opuestos A y B. Describir el lugar geométrico del ortocentro de los triángulos ABC, siendo C un punto de \mathcal{C} distinto de A y B.

Problema 5

Este último problema forma parte junto con el 4º, del ejercicio 4. También vale 1,25 puntos y es, después del segundo, de los más largos. Es un problema de probabilidad y se trata de valorar cuánto puede valer un cierto a positivo para que se cumplan una serie de condiciones. Nos enfrentamos a un planteamiento no muy complicado que sí tiene diferentes casos y unas cuantas operaciones relativamente sencillas. Al final, lo cicho: algo largo.

Se eligen aleatoriamente los números b,c\in[0,a]. La probabilidad de que la distancia en el plano complejo de las raíces del polinomio z^2+bz+c no sea mayor que 1, no es menor que 0,25, hallar a.

No existen fórmulas para aprender a resolver problemas, salvo haber resuelto muchos. Mi recomendación es que intentéis el práctico vosotros mismos, sin ver ninguno de los vídeos; y solo después de haber dedicado bastante tiempo a cada problema visualizar como los resuelvo yo.

Por último deciros que podéis hacerme llegar cualquier comentario, bien a través del blog, bien a través de mi correo electrónico: jorgemorra@outlook.es.

Jorge Morra

Oposiciones Matemáticas Alicante 2009. Parte Práctica

En este post encontraréis vídeos en los que resuelvo los problemas de la parte práctica de las Oposiciones de Matemáticas en la Comunidad Valenciana; y más concretamente en el 2009 y en la provincia de Alicante.

Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes.

Si os interesan también otras pruebas prácticas os dejo algunos enlaces con otras entradas de exámenes también resueltos:

Oposiciones Matemáticas Albacete 2015

Oposiciones Matemáticas Toledo 2018

Extremadura (Badajoz 2000)

Castilla y León (2018)


Aquí os vais a encontrar un total de cinco vídeos. En el primero hago solamente una introducción a los ejercicios que se proponen; y en él hablo y comento cada uno de ellos sin entrar en profundidad en su forma de resolución.

Los restantes contienen los problemas resueltos. Reconozco que con diferente dificultad cada uno de ellos; algo que ya comento en los vídeos. En definitiva, espero que no tengáis problemas en las explicaciones; pero como siempre digo, podéis enviarme una observación en el canal de youtube donde estarán colgados, o bien en este blog, o bien en el correo electrónico; lo que prefiráis.

Introducción.


Problema nº1

Sea M_{3}(\mathbb{R}) el espacio vectorial de las matrices reales cuadradas de orden 3,

(i) Demostrar que el conjunto A de las matrices reales antisimétricas de orden 3 es un subespacio vectorial de M_{3}(\mathbb{R}) y obtener razonadamente una base canónica de este subespacio.

(ii) Si A\longrightarrow P_3(\mathbb{R}) es la aplicación lineal definida mediante

    \[\text{T}\left \{ \left (\begin{array} {ccc} 0&a&b\\-a&0&c\\-b&-c&0 \end{array} \right) \right \}:=ax+bx^2+cx^3\]

hallar la matriz de esta aplicación lineal asociada a la base canónica de A y a la  base canónica \{1,x,x^2,x^3\} de P_3(\mathbb{R}), y escribir la ecuación matricial de la aplicación lineal.

(iii) Hallar el núcleo y la imagen de esta aplicación lineal y demostrar que es un isomorfismo sobre el conjunto imagen Im(\text{T}).

(iv) Comprobar que se cumple el Teorema de las dimensiones.

Este problema se resuelve utilizando el Álgebra Lineal y los conceptos mínimos sobre homomorfismos entre espacios vectoriales. Es sabido que todos los espacios vectoriales de una misma dimensión son isomorfos; para eso basta definir una aplicación que lleve una base de uno de ellos en una base del otro y comprobar que dicha aplicación es en realidad biyectiva. Aplicando el teorema que afirma que V/ker f es isomorfo a Im f, siendo f un homomorfismo se llega sin dificultad al resultado que pide el problema.


Problema nº2

Sean dos segmentos AB y BC de igual longitud d que están articulados por el punto B. El punto A está sobre el origen de coordenadas y el punto C varía sobre el eje OX positivo. Encontrar la ecuación del lugar geométrico de un punto P situado sobre el segmento BC a una distancia p del punto C. Dibujar el lugar.

Es, con diferencia, el de mayor dificultad de los cuatro. Sin embargo en apariencia no parece muy complicado pues enseguida me di cuenta que el lugar geométrico era una elipse, o en este caso (aunque luego no lo digo en el  vídeo), un cuarto de elipse. Pero cuando se trabaja con ecuaciones de segundo grado con cuatro o cinco variables la «cosa» se complica; y a mí se me complicó.

Dediqué al problema más tiempo que a lo dedicado a los otros tres juntos; desde luego bastante más de tres horas, y utilizando las ecuaciones cartesianas no conseguí resolverlo.

Cuando finalmente obtuve un resultado que parecía válido me di cuenta que no era correcto; así que tuve que volver a empezar, pero ahora cambié las coordenadas cartesianas por coordenadas polares; y con la demostración de un resultado de trigonometría aplicado a triángulos isósceles llegué a la elipse buscada.


Problema nº3

Calcular la longitud del arco de curva y=\ln\frac{e^x-1}{e^x+1} comprendido entre los puntos de abscisa 2 y 4.

En este ejercicio se pide calcular la longitud del arco de una curva (que resulta ser una función), entre dos puntos de abscisa 2 y 4. Es necesario conocer la fórmula que nos da la longitud, que viene dada por una integral; y es necesario también conocer el cambio de variable a efectuar, así como la resolución de integrales racionales. Yo no conozco de memoria dicha fórmula, y en el vídeo muestro cómo se puede deducir utilizando los conocimientos mínimos sobre integrales definidas, áreas y longitudes.


Problema nº4

Se lanza un dado hasta que aparezcan tres resultados distintos. Calcular el número medio de lanzamientos que hay que realizar.

Este último problema es de probabilidad en el que utilizo la Regla de Laplace. Para calcular tanto los casos favorables como los posibles utilizo la Combinatoria explicando cada uno de los pasos.

Sin embargo la cuestión que plantea el problema no es la probabilidad de que los lanzamientos se detengan en la tirada enésima, sino la media del número de lanzamientos que hay que realizar. Como no tenemos un número máximo de tiradas, éste nunca acaba, lo que conlleva la suma de una serie de infinitos términos. Para sumar dicha serie utilizo las series de potencias y algunos teoremas de integrales o derivadas de series uniformemente convergentes.

Espero que todos los vídeos os hayan gustado, que se hayan entendido sin demasiados problemas y que os faciliten la tarea de estudiar la parte práctica de la oposición.

Ya sabéis que podéis hacer cualquier comentario en el blog, en el canal de Youtube, o en mi correo electrónico.

Un saludo.

Jorge

Oposiciones Matemáticas Albacete 2015. Parte Práctica

En este post voy a resolver los problemas de la parte práctica de las Oposiciones de Matemáticas en Castilla la Mancha; y más concretamente en la provincia de Albacete en el 2015. Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes. En cada uno de los tres vídeos resolveré uno de los problemas con los que se enfrentaron los opositores de ese año. Tienen dificultades diferentes; así mientras que el primer y tercer problema son asequibles en el tiempo que tienes para resolverlos; el segundo problema es de mucha mayor dificultad. Es obvio que el nivel de los problemas es la mejor forma de discriminar a los que tienen un mayor conocimiento de las Matemáticas de los que no la tienen. Sin embargo, en ocasiones aumentar mucho la dificultad no consigue discriminar sino todo lo contrario; puesto que el porcentaje que llega a resolverlo es prácticamente nulo. En las siguientes líneas tenéis los tres problemas y los vídeos que los resuelven. Espero que se entiendan y que os ayuden.
Problema nº 1
Sea R la región del plano definida por la parte positiva de los ejes de coordenadas y la curva y=2\cos x en 0\leq x \leq \frac{\pi}{2}. Halla el valor de a tal que la curva y=a\sin x, divida la región R en dos regiones de igual área. Este problema se resuelve utilizando el concepto de integral definida como el área encerrada entre una curva y el eje X; o como el área encerrada entre dos curvas.
Problema nº2
Demostrar la veracidad o falsedad de la siguiente afirmación: «Para todo número n\in \mathbb{N}, se puede encontrar un conjunto de n números naturales consecutivos que no contiene ningún número primo.» En este vídeo demuestro que tal resultado es cierto. La forma de hacerlo es más propia de idea feliz que de seguir un procedimiento propio en una demostración matemática. Yo tardé en resolverlo bastante más que los otros dos juntos. La Reducción al Absurdo no me funcionó, la Inducción Matemática tampoco, y las clases \mathbb{Z}_n aunque más cerca, no llegaron a demostrarlo. La inspiración vino del aire y de repente.
Problema nº3
En el triángulo acutángulo ABC; AH, AD y AM son, respectivamente, la altura, la bisectriz y la mediana que parten de A estando H, D y M en el lado BC. Si las longitudes de AB, AC y MD son, respectivamente, 11, 8 y 1, calcula la longitud del segmento DH. Este problema de triángulos es finalmente de Trigonometría. Los cálculos empiezan por utilizar el Teorema del Seno, y acabar con el Teorema de Pitágoras. Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces: Como siempre digo; si algo no ha quedado claro o si queréis hacer algún comentario, podéis dejar una nota o bien enviarme un correo electrónico: jorgemorra@outlook.es. Un saludo. Jorge.