Aritmética (Oposiciones Matemáticas) – Bloque de números

El primer bloque de la oposición de Matemáticas de Secundaria es el de números. Los temas que engloba son: desde el primero que desarrolla el conjunto de los naturales, hasta el décimo, que es eminentemente histórico y justifica la creación de todos los conjuntos que se conocen. Desde hace algo más de un año se han podido ir adquiriendo en Amazon por unidades, bien en formato Kindle o en papel. Actualmente hay publicados los diecinueve primeros.

No obstante, he creído interesante reunirlos por bloques e ir editando volúmenes de acuerdo a los contenidos que tengan. El lector tiene la opción de, o bien adquirirlos de forma aislada o bien adquirir una recopilación por bloques agrupados en volúmenes.

Al primero lo he llamado «Aritmética» porque contiene el desarrollo de los temas relacionados con los números y sus operaciones. Bien es cierto que en matemáticas es literalmente imposible limitar, en el desarrollo de un tema, los contenidos a aquellos esencialmente aritméticos; porque aunque las Matemáticas puedan «dividirse» en parcelas, todas se acaban entrelazando. Por poner un ejemplo, en el tema relacionado con los números racionales, además de la introducción de sus operaciones, también se desarrollan conceptos algebraicos y topológicos. \mathbb{Q} es algebraicamente el cuerpo de fracciones de un dominio de integridad, y topológicamente un espacio denso en \mathbb{R}.

Aritmética

Contiene el desarrollo de:

  1. Números naturales. Sistemas de numeración.
  2. Fundamentos y aplicaciones de la teoría de grafos. Diagramas en árbol.
  3. Técnicas de recuento. Combinatoria.
  4. Números enteros. Divisibilidad. Números primos. Congruencias.
  5. Números racionales.
  6. Números reales. Topología de la recta real.
  7. Aproximación de números. Errores. Notación científica.
  8. Sucesiones. Término general y forma recurrente. Progresiones aritméticas y geométricas.
  9. Números complejos. Aplicaciones geométricas.
  10. Sucesivas ampliaciones del concepto de número. Evolución histórica y problemas que resuelve cada una.

El siguiente volumen englobará los temas que van, desde el vigésimo primero hasta trigésimo y que componen la parte de Álgebra. Bien es verdad que contendrá tanto la parte relativa a ecuaciones y polinomios en una o varias variables, como otra parte de Álgebra abstracta y de Álgebra Lineal.

Si estás interesado en los temas puedes encontrar en Amazon los publicados hasta ahora. Este primer volumen, «Aritmética», lo tienes en formato kindle, y en el siguiente enlace puedes obtener una muestra:

Aritmética (Oposiciones Matemáticas).

También aquí puedes encontrar la relación y una pequeña muestra de publicado hasta este momento.

Tema 5. Números Racionales

Un dominio de integridad es un anillo conmutativo unitario sin divisores de cero; y dado un cuerpo \mathbb{K}, todo anillo de él es un dominio de integridad. El problema que nos planteamos es si todo dominio de integridad se puede considerar como subanillo de un cuerpo. La respuesta es cierta y a dicho cuerpo se le llama el cuerpo de fracciones de un dominio de integridad.

Pero además, cuando trabajamos con los números enteros, cuya estructura es precisamente la de un anillo conmutativo sin divisores de cero, nos encontramos con que la ecuación ax=b no siempre tiene solución. Es trivial comprobar que solamente la tendrá si a es divisible entre b. Como esto no siempre es posible, nos encontramos con la necesidad de dar solución al problema en todos los casos, no solamente en aquellos en los que b|a.

El procedimiento que vamos a utilizar es estándar. Básicamente vamos a construir un cuerpo, cuya definición es el cuerpo de fracciones de un dominio de integridad.

Esta forma se utiliza para cualquier estructura que sea dominio, y en nuestro caso el objetivo es construir el cuerpo minimal que contenga a \mathbb{Z}. En el siguiente punto del tema se definirá \mathbb{Q} como un conjunto de cocientes del tipo \frac{a}{b} con a,b\in\mathbb{Z} y b\neq 0. Parece bastante obvio que todo cuerpo que contenga a los números enteros debe contener a los cocientes anteriores, por tanto debería contener a \mathbb{Q}. Pero además se puede demostrar que dos cuerpos de fracciones del mismo dominio son isomorfos, lo que inevitablemente nos llevará a la unicidad de \mathbb{Q}, y a que sea éste el cuerpo minimal que contenga a \mathbb{Z}.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 5. Números Racionales