Aritmética (Oposiciones Matemáticas) – Bloque de números

El primer bloque de la oposición de Matemáticas de Secundaria es el de números. Los temas que engloba son: desde el primero que desarrolla el conjunto de los naturales, hasta el décimo, que es eminentemente histórico y justifica la creación de todos los conjuntos que se conocen. Desde hace algo más de un año se han podido ir adquiriendo en Amazon por unidades, bien en formato Kindle o en papel. Actualmente hay publicados los diecinueve primeros.

No obstante, he creído interesante reunirlos por bloques e ir editando volúmenes de acuerdo a los contenidos que tengan. El lector tiene la opción de, o bien adquirirlos de forma aislada o bien adquirir una recopilación por bloques agrupados en volúmenes.

Al primero lo he llamado «Aritmética» porque contiene el desarrollo de los temas relacionados con los números y sus operaciones. Bien es cierto que en matemáticas es literalmente imposible limitar, en el desarrollo de un tema, los contenidos a aquellos esencialmente aritméticos; porque aunque las Matemáticas puedan «dividirse» en parcelas, todas se acaban entrelazando. Por poner un ejemplo, en el tema relacionado con los números racionales, además de la introducción de sus operaciones, también se desarrollan conceptos algebraicos y topológicos. \mathbb{Q} es algebraicamente el cuerpo de fracciones de un dominio de integridad, y topológicamente un espacio denso en \mathbb{R}.

Aritmética

Contiene el desarrollo de:

  1. Números naturales. Sistemas de numeración.
  2. Fundamentos y aplicaciones de la teoría de grafos. Diagramas en árbol.
  3. Técnicas de recuento. Combinatoria.
  4. Números enteros. Divisibilidad. Números primos. Congruencias.
  5. Números racionales.
  6. Números reales. Topología de la recta real.
  7. Aproximación de números. Errores. Notación científica.
  8. Sucesiones. Término general y forma recurrente. Progresiones aritméticas y geométricas.
  9. Números complejos. Aplicaciones geométricas.
  10. Sucesivas ampliaciones del concepto de número. Evolución histórica y problemas que resuelve cada una.

El siguiente volumen englobará los temas que van, desde el vigésimo primero hasta trigésimo y que componen la parte de Álgebra. Bien es verdad que contendrá tanto la parte relativa a ecuaciones y polinomios en una o varias variables, como otra parte de Álgebra abstracta y de Álgebra Lineal.

Si estás interesado en los temas puedes encontrar en Amazon los publicados hasta ahora. Este primer volumen, «Aritmética», lo tienes en formato kindle, y en el siguiente enlace puedes obtener una muestra:

Aritmética (Oposiciones Matemáticas).

También aquí puedes encontrar la relación y una pequeña muestra de publicado hasta este momento.

Tema 10. Sucesivas ampliaciones del concepto de número. Evolución histórica y problemas que resuelve cada una.

El concepto de número es posiblemente el concepto más importante que podemos encontrarnos en todo el edificio de las matemáticas. Se forma a través de un prolongado desarrollo histórico, a partir de cuando el hombre es capaz de diferenciar una parte de varias; y concluye cuando las necesidades internas de la propia ciencia necesita de su concreción. El surgimiento y la formación de este concepto tuvieron lugar a la par del nacimiento y desarrollo de las matemáticas.

Al comienzo se trataba únicamente de la necesidad de poder contar y diferenciar objetos de forma abstracta. En muchas culturas la introducción de los primeros números no se hizo abstrayendo el concepto de lo que querían diferenciar sino que en la propia palabra o expresión se incluía lo que se contaba; así, tres árboles tenía una expresión distinta que tres animales; puesto que posiblemente para el hombre primitivo no era necesario saber contar para establecer si un cierto conjunto estaba completo.

Es de rigor afirmar que independientemente de los comienzos, la necesidad de contar objetos conjunto al surgimiento del concepto abstracto de número natural. Las primeras formas nacen básicamente por la necesidad de transmitir información acerca de la cantidad de elementos de un conjunto concreto; utilizando en algunos casos partes del cuerpo humano, palos, piedras, muescas, nudos en cuerdas, etc. A este respecto se han encontrado huesos en Europa con marcas que bien pudieran ser formas de registrar un calendario lunar. Sin embargo hasta que no se introduce la escritura no encontramos los primeros vestigios de los primeros sistemas de numeración que abstraían el concepto de número natural.

El paso siguiente de la abstracción es la forma de escribir el número, y para ello comienzan a surgir los primeros sistemas de numeración. El proceso de formación del que utilizamos en la actualidad ha sido el final de una serie muy entremezclada de sistemas de numeración diversos y con distintas posibilidades. En épocas muy cercanas en el tiempo podemos encontrarnos diferentes formas de denotar los números y las operaciones que podían hacer entre ellos.

A lo largo de la historia los pueblos han ido adoptando el concepto de número natural y han trabajado con él de distintas formas. La misma ciencia es la que a partir del siglo XV comienza a necesitar ampliar el concepto de natural a un nuevo conjunto, el de los enteros, al introducir dos nuevas ideas: el cero y los negativos. Posteriormente fueron necesarias nuevas ampliaciones por la necesidad de las propias matemáticas. Los enteros al resolver ecuaciones que en los números naturales no tenían solución; los racionales como cuerpo de fracciones del dominio de integridad de los enteros; los reales como único cuerpo ordenado, arquimediano y completo que incluye a los racionales; los complejos como extensión algebraica de los reales resolviendo aquellas ecuaciones con raíces negativas; y por último los cuaterniones como necesarios para interpretar y operar con magnitudes físicas que requirieran de varias coordenadas.

A comienzos del siglo XIX, como consecuencia de los grandes éxitos del cálculo diferencial, muchos matemáticos pensaron que era necesario argumentar las bases del análisis, es decir, la teoría de los límites. El número natural se concebía como un conjunto finito de unidades, el racional, como una razón de ciertas magnitudes, el real, como la longitud de un segmento en la recta y el complejo como un punto en el plano. Sí estaba claro que cada nuevo conjunto de números tenía que ser una extensión algebraica del anterior, lo que implicaba que las operaciones definidas tenían que conservarse de unos a otros.

Desde esta perspectiva se formuló el llamado »principio de permanencia de las leyes formales del cálculo». Esta máxima indicaba que cada vez que construyera un nuevo sistema numérico, más amplio que el inicial, las operaciones debían generalizarse de modo que se conservaran las leyes de las operaciones que ya tenían los números.

Esta idea, junto con la opinión generalizada de que la construcción de las matemáticas debía pasar por el método axiomático basado en la teoría de conjuntos, indujo a los matemáticos de finales del XIX a definir nuevos sistemas numéricos utilizando la noción de »extensión de un sistema algebraico». Para este proceso se entendía que los axiomas no eran más que las relaciones y operaciones algebraicas satisfechas por un conjunto en unas determinadas condiciones. Así por ejemplo se definen los naturales, o incluso los reales.

El principio de permanencia podría formularse de la siguiente forma:
Definición: Principio de permanencia
El sistema algebraico A' se denomina extensión del sistema algebraico A si el conjunto fundamental de A es un subconjunto del conjunto fundamental de A', siempre que exista una aplicación biyectiva del conjunto de las relaciones del sistema A' en el conjunto de las relaciones del sistema A y, si para cualquier juego de elementos del sistema A, en cuyo caso de cumple alguna relación de este sistema, se verifica la correspondiente relación del sistema A'.

En esencia este principio viene a decir que en toda ampliación del concepto de número deben conservarse las leyes formales (conmutativa, asociativa,…) de las operaciones aritméticas.

El desarrollo del tema al completo puedes encontrarlo en amazon, en formato kindle o en formato papel como prefieras. También aquí puedes encontrar la relación de los temas que he publicado hasta ahora; y en el siguiente enlace puedes descargarte las primeras páginas:

Tema 10. Sucesivas ampliaciones del concepto de número. Evolución histórica y problemas que resuelve cada una.

Oposiciones Matemáticas Albacete 2015. Parte Práctica

En este post voy a resolver los problemas de la parte práctica de las Oposiciones de Matemáticas en Castilla la Mancha; y más concretamente en la provincia de Albacete en el 2015. Si accedéis a la entrada Oposiciones de Matemáticas, encontraréis algunos consejos y otros enlaces a temas desarrollados de la misma oposición. Los vídeos son más extensos que los de la resolución de problemas pero también os pueden ser interesantes. En cada uno de los tres vídeos resolveré uno de los problemas con los que se enfrentaron los opositores de ese año. Tienen dificultades diferentes; así mientras que el primer y tercer problema son asequibles en el tiempo que tienes para resolverlos; el segundo problema es de mucha mayor dificultad. Es obvio que el nivel de los problemas es la mejor forma de discriminar a los que tienen un mayor conocimiento de las Matemáticas de los que no la tienen. Sin embargo, en ocasiones aumentar mucho la dificultad no consigue discriminar sino todo lo contrario; puesto que el porcentaje que llega a resolverlo es prácticamente nulo. En las siguientes líneas tenéis los tres problemas y los vídeos que los resuelven. Espero que se entiendan y que os ayuden.
Problema nº 1
Sea R la región del plano definida por la parte positiva de los ejes de coordenadas y la curva y=2\cos x en 0\leq x \leq \frac{\pi}{2}. Halla el valor de a tal que la curva y=a\sin x, divida la región R en dos regiones de igual área. Este problema se resuelve utilizando el concepto de integral definida como el área encerrada entre una curva y el eje X; o como el área encerrada entre dos curvas.
Problema nº2
Demostrar la veracidad o falsedad de la siguiente afirmación: «Para todo número n\in \mathbb{N}, se puede encontrar un conjunto de n números naturales consecutivos que no contiene ningún número primo.» En este vídeo demuestro que tal resultado es cierto. La forma de hacerlo es más propia de idea feliz que de seguir un procedimiento propio en una demostración matemática. Yo tardé en resolverlo bastante más que los otros dos juntos. La Reducción al Absurdo no me funcionó, la Inducción Matemática tampoco, y las clases \mathbb{Z}_n aunque más cerca, no llegaron a demostrarlo. La inspiración vino del aire y de repente.
Problema nº3
En el triángulo acutángulo ABC; AH, AD y AM son, respectivamente, la altura, la bisectriz y la mediana que parten de A estando H, D y M en el lado BC. Si las longitudes de AB, AC y MD son, respectivamente, 11, 8 y 1, calcula la longitud del segmento DH. Este problema de triángulos es finalmente de Trigonometría. Los cálculos empiezan por utilizar el Teorema del Seno, y acabar con el Teorema de Pitágoras. Si queréis ver otras entradas donde también resuelvo otros prácticos de otras comunidades podéis encontrarlas en los enlaces: Como siempre digo; si algo no ha quedado claro o si queréis hacer algún comentario, podéis dejar una nota o bien enviarme un correo electrónico: jorgemorra@outlook.es. Un saludo. Jorge.